Abstract.---Accuracy of phylogenetic methods may be assessed in terms of consistency, efficiency, and robustness. Four principal methods have been used for assessing phylogenetic accuracy: simulation, known phylogenies, statistical analyses, and congruence studies. Simulation studies are useful for studying accuracy of methods under idealized conditions, and can be used to make general predictions about the behavior of methods if the limitations of the models are taken into account. Studies of known phylogenies can be used to test predictions from simulation studies, which provides a check on the robustness of the models (and may suggest refinements for future simulations). Statistical analyses allow general predictions to be applied to specific results, facilitate assessments as to whether or not sufficient data have been collected to formulate a robust conclusion, and ask whether a given data set is any more structured than random noise. Finally, congruence studies of multiple data sets assess the degree to which independent results agree, and thus the minimum proportion of the findings that can be attributed to an underlying phylogeny. These different methods of assessing phylogenetic accuracy are largely complementary, and the results are consistent in identifying a large class of problems that are amenable to phylogenetic reconstruction. [Phylogeny; accuracy; simulations; experimental evolution; statistics; congruence; consistency; efficiency; robustness]
"The major problem in studying the relative efficiencies [of phylogenetic methods] is that the true tree is usually unknown for any set of real organisms or any set of real DNA sequences, so that it is difficult to judge which tree is the correct one. However, this problem can be avoided if we use computer simulation" (Nei, 1991:90).
"The evolutionary models used in many simulation studies are exceedingly simple, and even though they will surely become more sophisticated (e.g., more ÔrealisticÕ) in the future, such studies will still face a credibility gap" (Miyamoto and Cracraft, 1991:11).
"[T]here are some fundamental philosophical and empirical differences between simulations of fictitious taxa and their DNA sequences, on the one hand; and real-world taxa and their sequence characteristics, on the other" (Miyamoto and Cracraft, 1991:11).
"Although I am skeptical that the results of [experimental phylogenies] Ôdirectly support the legitimacy of methods for phylogenetic estimation,Õ it remains to be seen what experimental phylogenetics can teach us about the problem of phylogenetic inference" (Sober, 1993:89).
"As DNA sequences accumulate, there will be an increasing demand for statistical methods to estimate evolutionary trees from them, and to test hypotheses about the evolutionary process" (Felsenstein, 1981:368).
"It is remarkable that, in a century which has seen such a large growth in the application of statistics to the natural sciences, the fundamental issues of statistical inference have not been resolved. There are not many more statisticians than opinions as to how to assess rival hypotheses in the light of data" (Edwards, 1969:1233).
"[E]xtensive congruence among branching patterns derived from independent data sets and by different methods of analysis is unlikely to occur for any reason other than phylogeny" (Sheldon and Bledsoe, 1993:256-257).
"[T]here may indeed be substantial congruence between the two data sets, but that ÔcongruenceÕ is not quite what we had hoped it would be" (Swofford, 1991:326).
"On that happy day when molecular systematists achieve the goal of adequate sampling in terms of both taxa and sequence length..., and when the computer and the program capable of analysing the alignment of life exist, there are two possible extremes: 'one tree,' or '10999 equally parsimonious trees'" (Patterson et al., 1993:180).
"'I checked it quite thoroughly,' said the computer, "and that quite definitely is the answer. I think the problem, to be quite honest with you, is that youÕve never actually known what the question is'" (Adams, 1979:181).
Jim Bull, Mike Charleston, Paul Chippindale, Keith Crandall, Tim Crowe, Cliff Cunningham, A. W. F. Edwards, Jotun Hein, John Huelsenbeck, Mike Miyamoto, Barbara Mable and an anonymous reviewer read this manuscript and offered useful suggestions. I thank Mike Miyamoto for inviting me to prepare an introduction to this series of papers on phylogenetic accuracy. My studies on phylogenetic accuracy have been supported by grants from the National Science Foundation.
Adams, D. 1979. The hitchhiker's guide to the galaxy. Crown Publishers, New York.
Adams, E. N., III. 1972. Consensus techniques and the comparison of taxonomic trees. Syst. Zool. 21:390-397.
Allard, M. W., and M. M. Miyamoto. 1992. Testing phylogenetic approaches with empirical data, as illustrated with the parsimony method. Mol. Biol. Evol. 9:778-786.
Archie, J. W. 1989. Phylogenies of plant families: A demonstration of phylogenetic randomness in DNA sequence data derived from proteins. Evolution 43:1796-1800.
Atchley, W. R., and W. M. Fitch. 1991. Gene trees and the origins of inbred strains of mice. Science 254:554-558.
Bandelt, H.-J., and A. W. M. Dress. 1992. Split decomposition: A new and useful approach to phylogenetic analysis of distance data. Mol. Phylogenet. Evol. 1:242-252. Barrett, M., M. J. Donoghue, and E. Sober. 1991. Against consensus. Syst. Zool. 40:486-493.
Baum, B. R. 1984. Application of compatibility and parsimony methods at the infraspecific, specific, and generic levels in Poaceae. Pages 192-220 in Cladistics: Perspectives on the reconstruction of evolutionary history. Columbia Univ. Press, New York.
Birnbaum, A. 1962. On the foundations of statistical inference. J. Am. Stat. Assoc. 57:269-326.
Blanken, R. L., L. C. Klotz, and A. G. Hinnebusch. 1982. Computer comparison of new and existing criteria for constructing evolutionary trees from sequence data. J. Mol. Evol. 19:9-19.
Bremer, K. 1988. The limits of amino-acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42:795-803.
Bremer, K. 1990. Combinable component consensus. Cladistics 6:369-372.
Bull, J. J., C. W. Cunningham, I. J. Molineux, M. R. Badgett, and D. M. Hillis. 1993a. Experimental molecular evolution of bacteriophage T7. Evolution 47:993-1007.
Bull, J. J., J. P. Huelsenbeck, C. W. Cunningham, D. L. Swofford, and P. J. Waddell. 1993b. Partitioning and combining data in phylogenetic analysis. Syst. Biol. 42:384-397.
Charleston, M. A., M. D. Hendy, and D. Penny. 1994. The effects of sequence length, tree topology, and number of taxa on the performance of phylogenetic methods. J. Computation. Biol. 1:133-151.
Chippindale, P. T., and J. J. Wiens. 1994. Weighting, partitioning, and combining characters in phylogenetic analysis. Syst. Biol. 43:278-287.
Crandall, K. A. 1994. Intraspecific cladogram estimation: Accuracy at higher levels of divergence. Syst. Biol. 43:222-235.
Crandall, K. A., A. R. templeton, and C. F. Sing. 1994. Intraspecific phylogenetics: Problems and solutions. Pages 273-297 in Models in phylogeny reconstruction (R. W. Scotland, D. J. Siebert, and D. M. Williams, eds.). Clarendon Press, Oxford, England.
Davis, J. I. 1993. Character removal as a means for assessing stability of clades. Cladistics 9:201-210.
DeBry, R. W. 1992. The consistency of several phylogeny-inference methods under varying evolutionary rates. Mol. Biol. Evol. 9:537-551.
De Queiroz, A. 1993. For consensus (sometimes). Syst. Biol. 42:368-372.
Dickersin, K., and J. A. Berlin. 1992. Meta-analysis: State-of-the-science. Epidemiol. Rev. 14:154-176.
Dixon, M. T., and D. M. Hillis. 1993. Ribosomal RNA secondary structure: Compensatory mutations and implications for phylogenetic analysis. Mol. Biol. Evol. 10:256-267.
Domingo, E., and J. J. Holland. 1994. Mutation rates and rapid evolution of RNA viruses. Pages 161-184 in The evolutionary biology of viruses (S. S. Morse, ed.). Raven Press, New York.
Donoghue, M. J., R. G. Olmstead, J. F. Smith, and J. D. Palmer. 1992. Phylogenetic relationships of Dipscales based on rbcL sequences. Ann. Mo. Bot. Gard. 79:249-265.
Edwards, A. W. F. 1969. Statistical methods in scientific inference. Nature 222:1233-1237.
Edwards, A. W. F. 1992. Likelihood: An account of the statistical concept of likelihood and its application to scientific inference. 2nd ed. Johns Hopkins Univ. Press, Baltimore.
Edwards, A. W. F., and L. L. Cavalli-Sforza. 1964. Reconstruction of evolutionary trees. Systematics Assoc. Publ. 6:67-76.
Efron, B. 1979. Bootstrapping methods: Another look at the jackknife. Ann. Stat. 7:1-26.
Efron, B. 1985. Bootstrap confidence intervals for a class of parametric problems. Biometrika 72:45-58.
Efron, B. 1987. Better bootstrap confidence intervals. J. Am. Stat. Assoc. 82:171-185.
Faith, D. P. 1991. Cladistic permutation tests for monophyly and nonmonophyly. Syst. Zool. 40:366-375.
Faith, D. P., and P. S. Cranston. 1991. Could a cladogram this short have arisen by chance alone?: On permutation tests for cladistic structure. Cladistics 7:1-28.
Felsenstein, J. 1973a. Maximum-likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Syst. Zool. 22:240-249.
Felsenstein, J. 1973b. Maximum-likelihood estimation of evolutionary trees from continuous characters. Am. J. Hum. Genet. 25:471-492.
Felsenstein, J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Syst. Zool. 27:401-410. Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17:368-376.
Felsenstein, J. 1983a. Parsimony in systematics: Biological and statistical issues. Annu. Rev. Ecol. Syst. 14:313-333.
Felsenstein, J. 1983b. Inferring evolutionary trees from DNA sequences. Pages 133-150 in Statistical analysis of DNA sequence data (B. S. Weir, ed.). Marcel Dekker, New York.
Felsenstein, J. 1985a. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783-791.
Felsenstein, J. 1985b. Confidence limits on phylogenies with a molecular clock. Syst. Zool. 34:152-161.
Felsenstein, J. 1987. Estimation of hominoid phylogeny from a DNA hybridization data set. J. Mol. Evol. 26:123-131.
Felsenstein, J. 1988. Phylogenies from molecular sequences: Inference and reliability. Annu. Rev. Genet. 22:521-565.
Fisher, R. A. 1956. Statistical methods and scientific inference. Oliver and Boyd, Edinburgh.
Fitch, W. M., and W. R. Atchley. 1985. Evolution in inbred strains of mice appears rapid. Science 228:1169-1175.
Fitch, W. M., and W. R. Atchley. 1987. Divergence in inbred strains of mice: A comparison of three different types of data. Pages 203-216 in Molecules and morphology in evolution: Conflict or compromise? (C. Patterson, ed.). Cambridge Univ. Press, Cambridge, England.
Glass, G. V. 1976. Primary, secondary and meta-analysis of research. Educ. Res. 5:3-8.
Gojobori, T., W.-H. Li, and D. Graur. 1982. Patterns of nucleotide substitution in pseudogenes and functional genes. J. Mol. Evol. 18:360-369.
Goldman, N. 1993. Statistical tests of models of DNA substitution. J. Mol. Evol. 36:182-198.
Guyer, C., and J. B. Slowinski. 1991. Comparisons of observed phylogenetic topologies with null expectations among three monophyletic lineages. Evolution 45:340-350.
Hacking, I. 1965. Logic of statistical inference. Cambridge Univ. Press, Cambridge, England.
Hall, P., and M. A. Martin. 1988. On bootstrap resampling and iteration. Biometrika 75:661-671.
Hedges, L. V., and I. Olkin. 1985. Statistical methods for meta-analysis. Academic Press, Orlando, Florida.
Hedges, S. B. 1992. The number of replications needed for accurate estimation of the bootstrap P value in phylogenetic studies. Mol. Biol. Evol. 9:366-369.
Heijerman, T. 1991. Adequacy of numerical taxonomic methods: Further experiments using simulated data. Z. Zool. Syst. Evolutionsforsch. 31:81-97.
Hein, J. 1990. Reconstructing evolution of sequences subject to recombination using parsimony. Math. Biosci. 98:185-200.
Hein, J. 1993. A heuristic method to reconstruct the history of sequences subject to recombination. J. Mol. Evol. 36:396-405.
Hendy, M. D., and D. Penny. 1989. A framework for the quantitative study of evolutionary trees. Syst. Zool. 38:297-309.
Hillis, D. M. 1987. Molecular versus morphological approaches to systematics. Annu. Rev. Ecol. Syst. 18:23-42.
Hillis, D. M. 1991. Discriminating between phylogenetic signal and random noise in DNA sequences. Pages 278-294 in Phylogenetic analysis of DNA sequences (M. M. Miyamoto and J. Cracraft, eds.). Oxford Univ. Press, New York.
Hillis, D. M., M. W. Allard, and M. M. Miyamoto. 1993a. Analysis of DNA sequence data: Phylogenetic inference. Methods Enzymol. 224:456-487.
Hillis, D. M., and J. J. Bull. 1991. Of genes and genomes. Science 254:528.
Hillis, D. M., and J. J. Bull. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analyses. Syst. Biol. 42:182-192.
Hillis, D. M., J. J. Bull, M. E. White, M. R. Badgett, and I. J. Molineux. 1992. Experimental phylogenetics: Generation of a known phylogeny. Science 255:589-592.
Hillis, D. M., J. J. Bull, M. E. White, M. R. Badgett, and I. J. Molineux. 1993b. Experimental approaches to phylogenetic analysis. Syst. Biol. 42:90-92.
Hillis, D. M., and J. P. Huelsenbeck. 1992. Signal, noise, and reliability in molecular phylogenetic analyses. J. Hered. 83:189-195.
Hillis, D. M., and J. P. Huelsenbeck. 1994. To tree the truth: Biological and numerical simulations of phylogeny. Pages 55-67 in Molecular evolution of physiological processes (D. M. Fambrough, ed.). Rockefeller Univ. Press, New York.
Hillis, D. M., J. P. Huelsenbeck, and C. W. Cunningham. 1994a. Application and accuracy of molecular phylogenies. Science 264:671-677.
Hillis, D. M., J. P. Huelsenbeck, and D. L. Swofford. 1994b. Hobgoblin of phylogenetics? Nature 369:363-364.
Huelsenbeck, J. P. 1991. Tree-length distribution skewness: An indicator of phylogenetic information. Syst. Zool. 40:257-270.
Huelsenbeck, J. P. 1995. The performance of phylogenetic methods in simulation. Syst. Biol. 44:00-00.
Huelsenbeck, J. P., and D. M. Hillis. 1993. Success of phylogenetic methods in the four-taxon case. Syst. Biol. 42:247-264.
Huelsenbeck, J. P., D. L. Swofford, C. W. Cunningham, J. J. Bull, and P. W. Waddell. 1994. Is character weighting a panacea for the problem of data heterogeneity in phylogenetic analysis? Syst. Biol. 43:288-291.
Jin, L., and M. Nei. 1990. Limitations of the evolutionary parsimony method of phylogenetic analysis. Mol. Biol. Evol. 7:82-102.
Källersjö, M., J. S. Farris, A. G. Kluge, and C. Bult. 1992. Skewness and permutation. Cladistics 8:275-287.
Kim, J. 1993. Improving the accuracy of phylogenetic estimation by combining different methods. Syst. Biol. 42:331-340.
Kim, J., F. J. Rohlf, and R. R. Sokal. 1993. The accuracy of phylogenetic estimation using the neighbor-joining method. Evolution 47:471-486. Kimura, M. 1980. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16:111-120.
Kishino, H., and M. Hasegawa. 1989. Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J. Mol. Evol. 29:170-179.
Kluge, A. G. 1989. A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Syst. Zool. 38:7-25.
Kuhner, M. K., and J. Felsenstein. 1994. A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol. Biol. Evol. 11:459-468.
Lake, J. A.. 1987. A rate-independent technique for analysis of nucleic acid sequences: Evolutionary parsimony. Mol. Biol. Evol. 4:167-191.
Lanyon, S. M. 1985. Detecting internal inconsistencies in distance data. Syst. Zool. 34:397-403.
Lanyon, S. M. 1993. Phylogenetic frameworks: Towards a firmer foundation for the comparative approach. Biol. J. Linnean Soc. 49:45-61.
Li, W.-H. 1989. A statistical test of phylogenies estimated from sequence data. Mol. Biol. Evol. 6:424-435.
Li, W.-H., and A. Zharkikh. 1995. Statistical tests of DNA phylogenies. Syst. Biol. 44:00-00.
Li, W.-H., and M. Guoy. 1991. Statistical methods for testing phylogenies. Pages 249-277 in Phylogenetic analysis of DNA sequences (M. M. Miyamoto and J. Cracraft, eds.). Oxford Univ. Press, New York.
Li, W.-H., C.-I. Wu, and C.-C. Luo. 1984. Nonrandomness of point mutation as reflected in nucleotide substitutions in pseudogenes and its evolutionary implications. J. Mol. Evol. 21:58-71.
Mann, C. 1990. Meta-analysis in the breech. Science 249:476-480.
McKitrick, M. C. 1985. Monophyly of the tyrannidae (Aves): Comparison of morphology and DNA. Syst. Zool. 34:35-45.
Mickevich, M. F. 1978. Taxonomic congruence. Syst. Zool. 27:143-158.
Mickevich, M. F., and J. S. Farris. 1981. The implications of congruence in Menidia. Syst. Zool. 30:351-370.
Mickevich, M. F., and M. S. Johnson. 1976. Congruence between morphological and allozyme data in evolutionary inference and character evolution. Syst. Zool. 25:260-270.
Miyamoto, M. M. 1985. Consensus cladograms and general classifications. Cladistics 1:186-189.
Miyamoto, M. M., and W. M. Fitch. 1995. Testing species phylogenies and phylogenetic methods with congruence. Syst. Biol. 44:0-0.
Miyamoto, M. M., M. W. Allard, R. M. Adkins, L. L. Janecek, and R. L. Honeycutt. 1994. A congruence test of reliability using linked mitochondrial DNA sequences. Syst. Biol. 43:236-249.
Miyamoto, M. M., and J. Cracraft. 1991. Phylogenetic inference, DNA sequence analysis, and the future of molecular systematics. Pages 3-17 in Phylogenetic analysis of DNA sequences (M. M. Miyamoto and J. Cracraft, eds.). Oxford Univ. Press, New York.
Moriyama, E. N., Y. Ina, K. Ikeo, N. Shimizu, and T. Gojobori. 1991. Mutation pattern of human immunodeficiency virus genes. J. Mol. Evol. 32:360-363.
Nei, M. 1991. Relative efficiencies of different tree making methods for molecular data. Pages 90-128 in Phylogenetic analysis of DNA sequences (M. M. Miyamoto and J. Cracraft, eds.). Oxford Univ. Press, New York.
Nelson, G. J. 1979. Cladistic analysis and synthesis: Principles and definitions, with a historical note on AdansonÕs Familles des Plantes (1763-1764). Syst. Zool. 28:1-21.
Olkin, I. 1990. History and goals. Pages 3-10 in The future of meta-analysis (K. W. Wachter and M. L. Straf, eds.). Russell Sage Foundation, New York.
Olsen, G. J. 1987. Earliest phylogenetic branchings: Comparing rRNA-based evolutionary trees inferred from various techniques. Cold Spring Harbor Symp. Quant. Biol. 52:825-837.
Ou, C.-Y., C. A. Ciesielski, G. Myers, C. I. Bandea, C.-C. Luo, B. T. M. Korber, J. I. Mullins, G. Schochetman, R. L. Berkelman, A. N. Economou, J. J. Witte, L. J. Furman, G. A. Satten, K. A. MacInnes, J. W. Curran, and H. W. Jaffe. 1992. Molecular epidemiology of HIV transmission in a dental practice. Science 256:1165-1171.
Page, R. D. M. 1991. Clocks, clades, cospeciation: Comparing rates of evolution and timing of cospeciation events in host-parasite assemblages. Syst. Zool. 40:188-198.
Patterson, C., D. M. Williams, and C. J. Humphries. 1993. Congruence between molecular and morphological phylogenies. Annu. Rev. Ecol. Syst. 24:153-188.
Peacock, D., and D. Boulter. 1975. Use of amino acid sequence data in phylogeny and evaluation of methods using computer simulation. J. Mol. Biol. 95:513-527.
Pearson, K. 1904. Report on certain enteric fever inoculation statistics. Brit. Med. J. 3:1243-1246.
Penny , D., L. R. Foulds, and M. D. Hendy. 1982. Testing the theory of evolution by comparing evolutionary trees constructed from five different protein sequences. Nature 297:197-200.
Penny, D., and M. D. Hendy. 1985a. Testing methods of evolutionary tree construction. Cladistics 1:266-278.
Penny, D., and M. D. Hendy. 1985b. The use of tree comparison metrics. Syst. Zool. 34:75-82.
Penny, D., and M. D. Hendy. 1986. Estimating the reliability of evolutionary trees. Mol. Biol. Evol. 3:403-417.
Penny, D., M. D. Hendy, and M. A. Steel. 1991. Testing the theory of descent. Pages 155-183 in Phylogenetic analysis of DNA sequences (M. M. Miyamoto and J. Cracraft, eds.). Oxford Univ. Press, New York.
Penny, D., M. D. Hendy, and M. A. Steel. 1992. Progress with methods for constructing evolutionary trees. Trends Ecol. Evol. 7:73-79.
Prager, E. M., and A. C. Wilson. 1976. Congruency of phylogenies derived from different proteins. J. Mol. Evol. 9:45-57.
Prager, E. M., and A. C. Wilson. 1988. Ancient origin of lactalbumin from lysozyme: Analysis of DNA and amino acid sequences. J. Mol. Evol. 27:326-335.
Rodrigo, A. G. 1993. Calibrating the bootstrap test of monophyly. Int. J. Parasitol. 23:507-514.
Rodrigo, A. G., M. Kelly-Borges, P. R. Bergquist, and P. L. Bergquist. 1993. A randomisation test of the null hypothesis that two cladograms are sample estimates of a parametric phylogenetic tree. N. Z. J. Bot. 31:257-268.
Rohlf, F. J., W. S. Chang, R. R. Sokal, and J. Kim. 1990. Accuracy of estimated phylogenies: Effects of tree topology and evolutionary model. Evolution 44:1671-1684.
Saitou, N., and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
Sanderson, M. J. 1989. Confidence limits on phylogenies: The bootstrap revisited. Cladistics 5:113-129.
Schöniger, M., and A. von Haeseler. 1993. A simple method to improve the reliability of tree reconstructions. Mol. Biol. Evol. 10:471-483.
Sheldon, F. H., and A. H. Bledsoe. 1993. Avian molecular systematics, 1970s to 1990s. Annu. Rev. Ecol. Syst. 24:243-278.
Sibley, C. G., and J. E. Ahlquist. 1987. Avian phylogeny reconstructed from comparisons of the genetic material, DNA. Pages 95-121 in Molecules and morphology in evolution: Conflict or compromise? (C. Patterson, ed.). Cambridge Univ. Press, Cambridge, England.
Sidow, A. 1993. Parsimony or statistics? Nature 367:26.
Sober, E. 1993. Experimental tests of phylogenetic inference methods. Syst. Biol. 42:85-89.
Sourdis, J., and M. Nei. 1988. Relative efficiencies of the maximum parsimony and distance-matrix methods in obtaining the correct phylogenetic tree. Mol. Biol. Evol. 5:298-311.
Steel, M. A., P. J. Lockhart, and D. Penny. 1993. Confidence in evolutionary trees from biological sequence data. Nature 364:440-442.
Stewart, C.-B., and A. C. Wilson. 1987. Sequence convergence and functional adaptation of stomach lysozymes from foregut fermenters. Cold Spring Harbor Symp. Quant. Biol. 52:891-899.
Studier, W. F. 1980. The last of the T phages. Pages 72-78 in Genes, cells, and behavior: A view of biology fifty years later (N. H. Horowitz and E. Hutchings, Jr., eds.). W. H. Freeman, San Francisco.
Swofford, D. L. 1991. When are phylogeny estimates from molecular and morphological data incongruent? Pages 295-333 in Phylogenetic analysis of DNA sequences (M. M. Miyamoto and J. Cracraft, eds.). Oxford Univ. Press, New York.
Tateno, Y., M. Nei, F. Tajima. 1982. Accuracy of estimated phylogenetic trees from molecular data. I. Distantly related species. J. Mol. Evol. 18:387-404.
Tateno, Y., N. Takezaki, and M. Nei. 1994. Relative efficiencies of the maximum-likelihood, neighbor-joining, and maximum-parsimony methods when substitution rate varies with site. Mol. Biol. Evol. 11:261-277. Templeton, A. R. 1983a. Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the humans and apes. Evolution 37:221-244.
Templeton, A. R. 1983b. Convergent evolution and nonparametric inferences from restriction data and DNA sequences. Pages 411-501 in Statistical analysis of DNA sequence data (B. S. Weir, ed.). Marcel Dekker, New York.
Templeton, A. R., E. Boerwinkle, and C. F. Sing. 1987. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. I. Basic theory and an analysis of alcohol dehydrogenase activity in Drosophila. Genetics 117:343-351.
Templeton, A. R., K. A. Crandall, and C. F. Sing. 1992. A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. III. Cladogram estimation. Genetics 132:619-633.
Wheeler, W. C., and R. L. Honeycutt. 1988. Paired sequence differences in ribosomal RNAs: Evolutionary and phylogenetic implications. Mol. Biol. Evol. 5:90-96.
Williams, S. A., and M. Goodman. 1989. A statistical test that supports a human/chimpanzee clade based on noncoding DNA sequence data. Mol. Biol. Evol. 6:325-330.
Yang, Z., N. Goldman, and A. Friday. 1994. Comparison of models for nucleotide substitution used in maximum-likelihood phylogenetic estimation. Mol. Biol. Evol. 11:316-324.
Zharkikh, A., and W.-H. Li. 1992a. Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences: I. Four taxa with a molecular clock. Mol. Biol. Evol. 9:1119-1147.
Zharkikh, A., and W.-H. Li. 1992b. Statistical properties of bootstrap estimation of phylogenetic variability from nucleotide sequences: II. Four taxa without a molecular clock. J. Mol. Evol. 35:356-366.
Zharkikh, A., and W.-H. Li. In press. Estimation of confidence in phylogeny: The full-and-partial bootstrap technique. Mol. Phylogenet. Evol.
Received 11 August 1994; accepted 5 October 1994.