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Abstract

We present a general model for tracking smooth trajec-
tories of multiple targets in complex data sets, where tracks
potentially cross each other many times. As the number of
overlapping trajectories grows, exploiting smoothness be-
comes increasingly important to disambiguate the associa-
tion of successive points. However, in many important prob-
lems an effective parametric model for the trajectories does
not exist. Hence we propose modeling trajectories as in-
dependent realizations of Gaussian processes with kernel
functions which allow for arbitrary smooth motion. Our
generative statistical model accounts for the data as com-
ing from an unknown number of such processes, together
with expectations for noise points and the probability that
points are missing.

For inference we compare two methods: A modified ver-
sion of the Markov chain Monte Carlo data association
(MCMCDA) method, and a Gibbs sampling method which
is much simpler and faster, and gives better results by be-
ing able to search the solution space more efficiently. In
both cases, we compare our results against the smoothing
provided by linear dynamical systems (LDS).

We test our approach on videos of birds and fish, and
on 82 image sequences of pollen tubes growing in a petri
dish, each with up to 60 tubes with multiple crossings. We
achieve 93% accuracy on image sequences with up to ten
trajectories (35 sequences) and 88% accuracy when there
are more than ten (42 sequences). This performance sur-
passes that of using an LDS motion model, and far exceeds
a simple heuristic tracker.

1. Introduction
Tracking multiple targets is very important in a num-

ber of domains, including surveillance, virtual reality, and

monitoring biological growth and behavior. We are partic-
ularly interested in tracking biological tip growth as ob-
served in tubes growing from pollen grains (see Figure
1(a)). Other relevant examples which have drawn the atten-
tion of the machine vision community include seedling root
growth [14], hypocotyl growth [24], and neuron growth [3].

In all these examples, there is a pressing need to quantify
the trajectories automatically from image data. Typically all
that can be assumed about the trajectories are that they are
relatively smooth. This makes tracking very challenging
when there are many trajectories that cross many times in
the captured images, further compounded by the presence
of noise (false points) and missing data.

Multiple-target tracking is a well-studied problem with
many approaches. Classical approaches include the mul-
tiple hypothesis tracker (MHT) [7, 19] and the joint prob-
abilistic data association (JPDA) filter [5]. More recently,
MCMC approaches have been proposed such as Markov
chain Monte Carlo data association (MCMCDA) [16] and
the MCMC-based particle filter [12]. In MCMCDA, the
tracking problem is solved by sampling over the space of
associations of points to tracks using the Metropolis Hast-
ings algorithm (MH). The MCMC-based particle filter also
uses the MH algorithm to generate samples (particles) for
the posterior at each time step. Finally, a data associa-
tion approach is also used in [11], where they use Fourier
inference over permutations to determine the associations.
Notice, however, that all these approaches rely on motion
models that are application-specific. This implies consider-
ing different dynamic models for different applications. Our
goal is to provide a more general model that can be used in
any application as long as the motion is smooth.

The traditional model for smooth motion is the linear-
Gaussian model – also known as the linear dynamical sys-
tem (LDS). While LDS models linear dynamics with Gaus-
sian noise very well, it is not well suited for motion which
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exhibits significantly more erratic smooth behavior. Fur-
thermore, in order to attain maximum flexibility, one is re-
quired to set many parameters. On the other hand, Gaussian
processes only require a single scale parameter, assuming a
chosen kernel function. Another problem with LDS mod-
els is that the state at a given time is conditionally inde-
pendent of previous states given the immediately preceding
state. Our model does not make this assumption, making it
more flexible and able to fit a wider range of motions. We
note that Gaussian processes have been used previously in
tracking [10, 22, 23], but differently than in this work.

We consider the following set up. An unknown number
of indistinguishable objects move independently according
to some movement model with their positions being mea-
sured at known intervals. The measured positions have er-
ror, and there is noise in the background which leads to false
detections. In addition, some measurements will typically
be missed. Crossing occurs because the trajectories occur in
3D space, but images only provide 2D data. For our main
application (pollen tubes), there is only a small amount of
depth variation – the arena is close to 2D – but there is suf-
ficient depth that trajectories often cross. In fact, we have
a modest amount of 3D information available because we
have multiple images taken at roughly the same time but
at different focal planes. However, the amount of ambiguity
that this resolves is minimal because the depth of focus is of
the order of the depth of the object being tracked. Nonethe-
less, to make use of the cue when it is helpful, we set up
the tracking problem in 3D space. Exploiting image stack
data in this way simply requires adding a third coordinate to
the problem, and this work applies equally well to tracking
with and without estimating depth.

As mentioned earlier, a key component of this work is
to address smooth motion using a Gaussian process where
the correlation of object position with preceding and subse-
quent positions drops of exponentially with time. We pro-
pose that this is an excellent way to translate the notion of
smooth, but otherwise arbitrary, motion into a generative
statistical model for the trajectories. Trajectories are also
characterized by weak priors on velocity, as well as their
likelihood of starting (birth) and ending (death). In addi-
tion, to effectively determine the number of tracks, we also
need estimates for the noise density and the probability of
missing data. We find that these parameters are sufficient to
effectively model the observations associated with multiple,
complex, and overlapping trajectories.

To determine the trajectories we adopt the data associ-
ation formulation of tracking [16] and use MCMC sam-
pling to explore the solution space. The generative statis-
tical model is constructed to allow principled comparisons
between hypothesis involving differing numbers of tracks.
To effectively explore the solution space we adopt and ex-
tend the sampling moves from Oh et al. [16]. In particular,

we consider moves for track birth, death, merge, split, ex-
tension, reduction, switch and update. We also present a
Gibbs sampling approach to compute the associations. This
method has the advantage of being simpler and faster when
compared to MCMCDA, while giving similar results.

We apply our method to several kinds of smooth mo-
tion, notably tracking linear structures arising from biolog-
ical tip growth, and focusing on pollen tubes growing on a
petri dish. As in many other possible applications of our
method, the goal is to automatically quantify trajectories in
images acquired in high-throughput experiments for identi-
fying mutant behavior and/or testing the effect of multiple
environmental conditions.

Scientific motivation for tracking pollen tubes. In or-
der for seed plants to reproduce, the male sperm cells con-
tained in pollen grains must be transferred to the female egg
cell. Upon arrival at the surface of a flower pistil, pollen
grains absorb water from the stigma and germinate to pro-
duce pollen tubes, which transport their cellular contents,
along with two sperm cells, to the ovule of the plant [17].
Pollen tubes grow exclusively at their tip [21], traveling
through the pistil (female organ within the plant) until they
reach the ovary and enter the ovule through an opening,
called the micropyle [13]. A pollen tube’s journey termi-
nates at one of two synergid cells inside the ovule, where it
bursts to release sperm cells. Pollen tubes are able to reach
ovules due to the guidance provided by diffusible signals
from the ovules. Characterizing and quantifying the inter-
action between pollen tubes and ovules is crucial to achieve
a better understanding of the seed formation process, and
could have a very broad impact. For instance, it could lead
to a better understanding of how plants regulate fertilization
and avoid spurious fertilization events, which could be used
to prevent pollen spread from genetically modified crops
into native species.

One current difficulty in characterizing this interaction
is that a human must watch time-lapse images of pollen
tubes growing in vitro (such as those in Figure 1(a)), iden-
tify each tube as it grows and recognize its behavior; e.g.,
which pollen tubes were targeting which ovules, which suc-
cessfully entered an ovule, and which were repelled. This
process is slow and time-consuming. The first step in au-
tomating this operation is to robustly find the paths of the
pollen tubes in the images. Taking the image difference of
consecutive time-lapse images provides the noisy tips of the
pollen tubes at all time points, as well as plenty of back-
ground noise. Since pollen tubes exhibit smooth growth,
we can apply our tracking algorithm, thereby taking a step
towards modeling pollen tube growth behavior and interac-
tions with ovules that affect tube trajectories through com-
plex and poorly understood signaling.

Reproducibility. An implementation of our tracker [2]
and associated data [1] are available on-line.
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2. Gaussian Processes as Smooth Functions
Our goal is to model smooth movement using Gaussian

processes. To do this, we shall formulate a dual interpre-
tation of (realizations of) Gaussian processes as parametric
functions evaluated at indices. We shall then interpret the
motion of objects as generated by a Gaussian process.

A Gaussian process is a stochastic process whose finite-
dimensional distributions are normally distributed [20]. We
will denote a Gaussian process by {fx}x∈Rd , with fx ∈
Rd′

, for all x ∈ Rd. Here Rd is called the index set and
the x ∈ Rd are called indices. A Gaussian process is
completely determined by a mean and covariance function,
m : Rd → Rd′

and k : Rd × Rd → Rd′×d′
, given by

m(x) = E[fx], (1)
k(x, x′) = cov(fx, fx′), (2)

for all indices x, x′ ∈ Rd. This means that for any finite
subset of the Gaussian process f = (f1, . . . , fT )T, where
we use the short-hand notation ft = fxt , with x1, . . . , xT ∈
Rd, we have that

f ∼ N (m(X),K(X,X)), (3)

with X = (x1, . . . , xT )T, m(X) = (m(x1), . . . ,m(xT ))T,
and K(X,X) is the covariance matrix and is given by
(k(xi, xj))ij , 1 ≤ i, j ≤ T .

Now suppose we have a collection of T points
{y1, . . . , yT } ⊂ Rd′

, through which we wish to fit a curve.
We assume that these data points were generated by a con-
tinuous function f : Rd → Rd′

evaluated at every point in
a set X = {x1, . . . , xT }, so that

yt = f(xt) + ε, (4)

for t = 1 . . . T , where ε ∼ N (0, σ2I) and σ2 is
the noise variance. We can model this data using
Gaussian processes [18] by assuming that the function
values f(x1), . . . , f(xT ) that generated the data y =
(y1, . . . , yT )T are a finite subset of the realization of a Gaus-
sian process {fx}x∈Rd , with fxt = f(xt). This is particu-
larly useful for us because Gaussian processes with a cer-
tain covariance function model smooth functions very well.
This covariance function is the squared exponential func-
tion, given by

k(x, x′) = exp
(
− 1

2l2
||x− x′||2

)
I, (5)

where l is a scale parameter and I is a d′ × d′ identity ma-
trix. Loosely speaking, this covariance function provides
a distribution over all functions from Rd → Rd′

[18], with
smooth functions being more likely than others. We also use
the zero mean function m(x) = 0. Using this model, we
can compute many quantities of interest, such as the MAP
estimate of f and the marginal likelihood of the data p(y).

2.1. The Posterior
As mentioned above, we model these smooth tracks

using Gaussian processes. Naturally, knowing the
measurement-track correspondences isn’t enough; we wish
to estimate the actual positions of the objects. One way to
do this is by maximizing the posterior distribution of the
actual locations given the data. Under the general regres-
sion setup described above, we we are looking for the f that
maximizes p(f |y, X), which, by Bayes’ rule, is given by

p(f |y, X) =
p(y | f , X)p(f |X)

p(y |X)
. (6)

Since all the densities in the right side of this equation are
normal (by equations (3), (4) and (9)), we can complete the
square to compute the posterior, yielding

f |y, X ∼ N (σ−2Σy,Σ), (7)

with Σ = (K(X,X)−1 + σ−2I)−1.

2.2. The Marginal Likelihood
The marginal likelihood of the data p(y |X), is given by

p(y |X) =

∫
p(y | f , X)p(f |X) df . (8)

Here, the prior distribution p(f |X) is given by (3), and
y | f ∼ N (f , σ2I) by (4). After a simple calculation, we
conclude that

y |X ∼ N (0,K(X,X) + σ2I). (9)

As we shall see below, this quantity will turn out to play a
very important role when using this model in conjunction
with our tracking algorithms.

3. Tracking Multiple Targets
The multiple-target tracking problem is posed as fol-

lows [16]. Assume that we have K objects moving in
a region of interest (normalized to unit volume) for a fi-
nite period of time. Let fk t be the location of object k
at discrete time t, k = 1, . . . ,K and t = 1, . . . , T . At
each of these discrete time-steps t, the following happens.
(1) A Poisson-distributed number of objects arises (i.e.,
moves for the first time), with parameter λb. (2) Each ex-
isting object from time t − 1 disappears with probability
pz and persists with probability 1 − pz . (3) Each persist-
ing object k move from position fk t−1 to fk t, and is de-
tected with probability pd as fk t + ε, where ε is additive
noise. (4) A Poisson-distributed number of noise detec-
tions (called “false alarms”), with parameter λf , are de-
tected. The multiple-target problem consists of estimating
K and {fk tki , . . . , fk tkf }, for k = 1, . . . ,K, where fk tki
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and fk tkf are the initial and final positions of target k, re-
spectively.

As already mentioned, targets are detected as they move
about the region of interest. Let Yt = {yt j : j = 1, . . . , nt}
be all the detections at time t, and Y =

⋃T
t=1 Yt be

the set of all measurements. An association [16] ω =
{τ0, τ1, . . . , τK} is a partition of Y , such that (1) |τk∩Yt| ≤
1 for k = 1, . . . ,K and t = 1, . . . , T and (2) |τk| ≥ 2 for
k = 1, . . . ,K. Under this representation, τ1, . . . , τK repre-
sent tracks, i.e., trajectories of objects, and τ0 is the set of
false alarms.

We now find the association ω̂ that maximizes the poste-
rior distribution which, by Bayes’ rule, is

p(ω̂ |Y ) ∝ p(Y | ω̂)p(ω̂), (10)

where p(Y |ω) is the likelihood function, discussed below.
The prior distribution is

p(ω) =
T∏

t=1

pztz (1− pz)
ctpdt

d (1− pd)
gt
λat
b λft

f e−λb−λf

at!ft!
,

(11)

where zt is the number of objects disappearing at time t,
ct the number of targets that persisted from time t − 1, dt
the number of detected targets at time t, at the number of
new targets, gt those that were undetected and, finally, ft
the number of false alarms. Notice that all these quantities
can be easily derived from ω.

4. Estimating the Tracks
As discussed in section 3, our objective is to find an as-

sociation ω that maximizes the posterior distribution (10).
To do this, we assume that the data consists of noisy
measurements of the values of the realized random vari-
ables of a Gaussian process in R2 or R3 – depending on
the dimensionality of the data – with indices in R (i.e.,
d′ = 2 or 3 and d = 1 using the notation from sec-
tion 2). Given an association ω = {τ0, τ1, . . . , τK}, ev-
ery track τk = (τk(1), . . . , τk(|τk|))T (where τk(i) is the
measurement corresponding to the ith observation of track
τk), k += 0, has a corresponding vector of function values
fk = (fk1, . . . fk|τk|)

T. A track also has a corresponding set
of indices Xk = {t1, . . . , t|τk|}, such that for all tm ∈ Xk,
τk(m) = ytm j = fkm + ε, for some j ∈ {1, . . . , ntm},
where ε is additive Gaussian noise, as before.

We can now compute the likelihood p(Y |ω). Since all
the tracks are independent of each other, we can decompose
the likelihood into factors:

p(Y |ω) = p(τ0 |ω)
K∏

k=1

p(τk |ω). (12)

(a) Data image (b) Superimposed tracks

Figure 1: (a) Frame 16 (of 33) of one of the pollen tube im-
age sequences. (b) The tracks found by MCMCDA with the
Gaussian process model superimposed on the same image.

We must now compute the individual likelihoods p(τk |ω)
for each track. Clearly, τk only depends on the part of ω
that dictates which measurements it is associated to; this
is simply Xk. This means that p(τk |ω) = p(τk |Xk),
which is the marginal likelihood of τk. In the case of the
Gaussian process model, this is simply a Gaussian distri-
bution, i.e., τk |Xk ∼ N (0,K(Xk, Xk) + σ2I). For an
LDS, the marginal likelihood can be computed iteratively
using the Kalman Filter [6]. Finally, for the distribution of
false alarms, yf ∈ τ0, we use a uniform distribution, i.e.,
p(yf ) = r. Then, p(τ0 |ω) = r|τ0|.

4.1. Data Association
Given any association ω = {τ0, τ1, . . . , τK}, we can

now easily compute the posterior probability p(ω |Y )
which, for convenience, we will call π(ω). We are still
left with the problem of how to find a good estimate of
the optimal – in the MAP sense – association. To solve
this problem, we have resorted to Markov chain Monte
Carlo (MCMC) sampling [15]. Specifically, we use the
Metropolis-Hastings algorithm to sample from the poste-
rior distribution π(ω) to search for an association that is
close to the maximum. This algorithm works by building
a reversible, ergodic Markov chain with invariant distribu-
tion π(ω) [9]. At each iteration, it proposes a new state of
the chain ω′ from the current state ω according to a pro-
posal distribution q(ω′ |ω). The proposed state ω′ is then
accepted with probability

A(ω, ω′) = min

{
1,

π(ω′)q(ω |ω′)

π(ω)q(ω′ |ω)

}
. (13)

If ω′ is accepted, it becomes the current state in the chain; if
it is rejected, ω is the new state. It can be shown that, if the
kernel of this Markov chain (given by q(ω′ |ω)A(ω, ω′))
satisfies the detailed balance condition [15], then π(ω) is
the stationary distribution of the chain and that the chain
will converge to it.

Our proposal distribution q(ω′ |ω) is a modification of
the one introduced in existing work on MCMC data asso-
ciation [16]. It consists of five different types of moves:
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birth/death moves, merge/split moves, extension/reduction
moves, update moves and switch moves. It is important
to note that these moves are such that they always create
valid tracks; in other words, the proposed association al-
ways meets the conditions discussed in section 3. In what
follows, ω = {τ0, τ1, . . . , τK} is the current state of the
Markov chain, and ω′ is the proposed state.

Birth/death moves. In a birth move, a new asso-
ciation ω′ is proposed by adding a new track to the
ω. The resulting association takes the form ω′ =
{τ0\τK+1, τ1, . . . , τK , τK+1}. A death move consists of
uniformly at random selecting a track τk from ω and con-
verting its observations into noise, so that ω′ = {τ0 ∪
{τk}, τ1, . . . , τk−1, τk+1, . . . , τK}.

Merge/split moves. In a merge move, two tracks τk1

and τk2 are randomly selected from ω and are merged,
so that ω′ = (ω\{τk1 , τk2}) ∪ τk′ , where τk′ =
{τk1(1), . . . , τk1(|τk1 |), τk2(1), . . . , τk2(|τk|)}. In a split
move, a track τk is chosen at random and split (at a ran-
dom point t) into two different tracks τk1 and τk2, yielding
ω′ = (ω\{τk})∪{τk1 , τk2}, with τk1 = {τk(1), . . . , τk(t)}
and τk2 = {τk(t+ 1) . . . , τk(|τk|)}.

Extension/reduction moves. In an extension move, a
track τk is chosen at random and is assigned observations
before its appearance time or after its disappearance time (a
decision taken uniformly at random). In the former case, if
n observations are added, the result is another track τk′ =
{y∗1 , . . . , y∗n, τk(1), . . . , τk(|τk|)}. In a reduction move, a
track τk is selected and shortened by removing observa-
tions before or after a randomly selected point t, yielding
τk′ = {τk(t), . . . , τk(|τk|)} or τk′ = {τk(1), . . . , τk(t)},
respectively.

Update move. We select a random track τk and a time
point 1 ≤ t ≤ |τk|, and assign observations after t, produc-
ing τk′ . The resulting association is ω′ = (ω\{τk})∪{τk′}.

Switch move. A pair of observations τk1(t1) and τk2(t2)
are selected from different tracks, which become τk1 =
{τk1(1), . . . , τk1(t1), τk2(t2+1), . . . , τk2(|τk2 |)} and τk2 =
{τk2(1), . . . , τk2(t2), τk1(t1 + 1), . . . , τk1(|τk1 |)}.

The main modification we made to the moves described
above is allowing for growth backward in time. For ex-
ample, in the extension move, we allow the possibility of
adding observations to a track before its start point, rather
than only after its end point. A proof of the reversibil-
ity of the original proposal distribution is given in [16],
which shows that the moves presented always generate valid
tracks. Our modifications also maintain this invariant, and
therefore the modified Markov chain is reversible.

4.2. Gibbs Sampler
Although MCMCDA gives good results, it has one major

disadvantage in that it has a very high rejection rate, espe-
cially in the switch and update moves. For these two partic-

ular moves, we observed rejection rates of up to 90%. Moti-
vated by this, we developed a Gibbs sampling approach [4]
to maximizing the posterior P (ω |Y ). Since Gibbs sam-
plers never reject, we were able to find comparable solu-
tions, and often better ones, in a shorter running time.

The Gibbs sampling algorithm is a special case of
the Metropolis-Hastings where the proposal distribu-
tion is equal to the full-conditional posterior distribu-
tion. That is, in general, if our goal is to sample
from target distribution π(x), our proposal is q(x′ |x) =
π(x′

k |x1, . . . , xk−1, xk+1, . . . , xn), where the xk are the
elements of the random vector x. In this way, the accep-
tance probability (13) becomes 1 and, thus, we accept all
generated samples [4, 6, 15].

Evidently, to use this technique we must be able to
represent our target variable as a random vector and be
able to sample from the full-conditional posterior. To do
so, we must reinterpret our data-association problem in a
slightly different but equivalent way. We shall now rep-
resent an association by a vector of assignment variables
αt j ∈ {0, . . . ,K}, t = 1, . . . , T , j = 1, . . . , nt, which
represent the track (including the noise track) to which yt j
is assigned. We shall denote the full random variable by
α = (α1 1, . . . , α1nt , . . . , αT nT ). This is clearly equiva-
lent to the previous representation of an association.

We now show how to sample from p(αt j |α\t j , Y ),
where α\t j = α\{αt j}. First, let us decompose
p(αt j |α\t j , Y ) into

p(αt j |α\t j , Y ) ∝ p(Y |α)p(αt j |α\t j), (14)

where we have used the fact that p(Y |α\t j) is a constant
in the expression. Similarly we have that p(α\t j) ∝ p(α).
This means that we can sample from p(αt j |α\t j , Y ) by
sampling from the conditional prior p(αt j |α\t j) and scal-
ing by the prior p(α) and the likelihood p(Y |α) and nor-
malizing. Finally, sampling from the conditional prior is
straight forward using the model described in section 3.

5. Experiments and Results
We compare the Gaussian-process-based motion model

to LDS. Here we used a typical model [6, 8] where targets
move according to

ft = Aft−1 + w, (15)

and the measurements are obtained according to

yt = Hft + v, (16)

where, in the case where the motion occurs in R2, A and H
are given by

A =





1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1



 , H =

[
1 0 0 0
0 1 0 0

]
,
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(a) GDA-GP; t = 5 (b) GDA-GP; t = 15 (c) GDA-GP; t = 30

(d) GDA-LDS; t = 5 (e) GDA-LDS; t = 15 (f) GDA-LDS; t = 30

Figure 2: An example of a sequence from the difficult set, this association has 60 tracks, of which GDA-GP found 53, all
almost completely correct. By contrast, GDA-LDS only found 35 most of which were not completely on target, and some of
which were off by a wide margin.

where ∆t is the time elapsed between xt and xt−1 (recall
that ft = f(xt)), and w and v are Gaussian random vari-
ables. Here, ft is the augmented state that contains the po-
sition as well as the velocity.

5.1. Image Processing and Ground Truth

We have posed our tracking problem as a data associa-
tion problem, whose input is sets of points at different time
steps. Here we briefly describe the way in which we have
extracted points from images. For targets that exhibit tip-
growth (such as pollen tubes), we first perform image sub-
traction from one frame to the next, a process which pro-
vides us with the tips of the targets at each time step. We
then do a simple background subtraction by removing the
average of all images from each frame. We subsequently
threshold the images and find the 8-connected components
(which we call blobs) in the resulting binary images. Fi-
nally, we find the blob centroids, which give us the points
which are the input to our algorithms. Note that, any blob
detector may be used for this step without any change to the
tracking algorithm itself.

For the purposes of accurately evaluating our approach,
we obtained the ground truth associations for all of our data
sets. We did this by manually assigning the detected blobs
to the correct tracks using a point-and-click tool we devel-
oped. Note that the ground truth is with respect to the de-
tected blobs, and not to the actual targets themselves, which

means that their quality is restricted by the quality of the
blob detector. We discuss this further below.

5.2. Evaluation
We evaluated our approach in three ways. The first,

which we call CTP (correct track percentage) is the percent-
age of track assignments that were correct. More precisely,
if τk and τ ′k are respectively corresponding real and com-
puted tracks, CTP is given by

CTP =
K∑

k=1

|τk ∩ τ ′k|
|τk|

, (17)

where we assign each estimated track to the ground truth
track that it shares the most points with.

Due to the way we obtained the ground truth associa-
tions, this measure can be somewhat misleading. For exam-
ple, an accuracy of 100% does not necessarily mean that
all targets were tracked correctly, but that all of the de-
tected blobs were assigned to the track that generated them.
Nonetheless, since we have posed the problem as a data as-
sociation problem, computing CTP is important as what is
measures is very close to what by data association is trying
to optimize.

A second minor issue with CTP is that in some cases
a single target produces more than one measurement for a
time point, and our algorithm may choose a different one
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Easy Set Hard Set
CTP CD Kerr CTP CD Kerr

MCMCDA-GP 0.87 0.05 0.31 0.79 0.05 1.05
MCMCDA-LDS 0.71 0.09 0.52 0.47 0.12 4.03

GDA-GP 0.93 0.01 0.22 0.88 0.05 2.01
GDA-LDS 0.74 0.07 0.61 0.59 0.09 3.00
Heuristic 0.51 0.28 1.83 0.13 0.27 9.03

Table 1: A comparison between the performance obtained using the Gaussian process model and that of the LDS model. In
the table above, MCMCDA-GP is the MCMCDA algorithm using the GP model and MCMCDA-LDS uses the LDS model.
The analogous terminology was used for GDA. We show values for CTP (correct track percentage, bigger is better), CD
(curve distance, smaller is better), and Kerr (smaller is better). All values in the tables are averages over the set of image
sequences in each data set. See text for details on these measures. In general, the Gaussian process model outperforms LDS
using both trackers, and GDA-GP tracker gives the best results overall.

than was chosen by the manual assignment. In other cases
an estimated track misses a blob but subsequently contin-
ues along the correct path, making it almost indistinguish-
able from the real track. This has a negative impact on the
evaluation since both choices can be considered correct.

These considerations suggest a second evaluation based
on the similarity of two tracks when a curve is fit through
its points (called CD for curve distance). Specifically, we
fit a function to each track τ using the Gaussian process
predictive distribution, which gives us fτ (t), for any value
of t ∈ R. We discretize this function to get L points
f (1)
τ , . . . , f (L)

τ , and compare two corresponding tracks by

Ck =
L∑

l=1

(f (l)
τk − f (l)

τ ′
k
)2

l
, (18)

where l is the length of the shortest of the two tracks. The
CD error is then calculated as CD = 1

K

∑K
k=1 Ck, and is

normalized to the size of the image.
For the last evaluation, we compute the average error

committed in the estimate of the number of tracks in an im-
age sequence. In other words, if ω and ω′ are a ground truth
and a computed association (respectively), the error for that
image sequence is simply Kerr =

∣∣|w| − |w′|
∣∣.

CTP CD Kerr

GDA-GP 0.89 0.10 1.33
GDA-LDS 0.77 0.11 2.16

Table 2: Results of applying our Gibbs tracker to four
videos of schools of fish and four videos of flocks of birds.
GDA-GP outperforms GDA-LDS even though the motion
of these targets can be well modeled in 3D by an LDS.

5.3. Pollen Tubes
As mentioned earlier, we have a set of 82 image se-

quences of pollen tubes growing in vitro. We tested our
model against LDS on this data using two different track-
ing approaches: MCMCDA and the Gibbs sampler (both

described in section 4), which we shall call GDA. We also
implemented a very simple heuristic algorithm that greed-
ily chooses assignments for tracks based on the likelihood
function (12).

The results can be seen in Table 1. Note that we sepa-
rated the data into two disjoint groups: one where the num-
ber of pollen tubes is ten or less, called the “easy” set, and
the other where the number is larger than ten, called the
“hard” set. The easy set has 35 test cases and the hard set
has 47. An example of a successfully tracked set of tubes is
shown in figures 1 and 2.

Note that there are two levels of comparison to be made.
The main one is the difference in performance when us-
ing the LDS model of motion against the much more gen-
eral GP model. In principle, any tracking algorithm can be
used for this purpose. With this in mind, it is clear that our
smooth model is far better suited to handle pollen tube data.

Turning our our attention to inference, the table shows
that GDA is working better than MCMCDA. Since these
methods have the same objective function, we conclude that
the Gibbs sampler is more efficiently able to explore the
solution space.

5.4. Birds and Fish
To further test our approach as a general method for

tracking multiple smooth trajectories, we tested our Gibbs
sampling method on on two other types of data sets, namely
four videos of flocks of birds and four videos of schools
of fish found on the Internet. Figure 3 shows two frames
from a bird video with the tracks found, and Table 2 shows
results using GDA-GP and GDA-LDS, averaged over the
eight videos.

Fish and birds largely exhibit linear motion, which is ex-
actly the type of motion that LDS is meant to model. In
spite of this, the GP model gives better results than the LDS
model. We propose that, while these types of targets do
move according to an LDS, their images on the camera do
not. There are two main reasons for this: (1) the targets are
being projected on the image plane and (2) the movement
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of the camera which took the images. Clearly, a projection
from 3D to 2D completely changes the path that, say, a fish
might take. Also, if the camera itself is moving as the video
is shot, the relative motion of the targets is drastically al-
tered. The motion is nevertheless still smooth, and thus the
Gaussian process model works reasonably well.

(a) t = 39 (b) t = 42

Figure 3: Two frames of birds flying with the tracks found
by GDA-GP superimposed on them. The extra curves are
from targets that have already passed through the scene.

6. Conclusion
We presented a model for smooth motion for multiple

target tracking. We have compared it with a more standard
model (LDS) by integrating it into two different tracking ap-
proaches, and testing it on two diverse data sets. The results
suggest that this is a very effective way to follow multiple,
overlapping tracks, which are relatively smooth, but other-
wise arbitrary. Further, the combination of data association
and Gaussian processes seems particularly effective, partly
by being able to exploit the full run of data if it is available.
Even when the number of tracks was large (hard pollen tube
data set), only one of them was missed on average, and the
ones that were found were followed relatively accurately.
We also introduced a Gibbs sampler for finding the associ-
ations which works significantly better than MCMCDA on
our data sets, and runs faster and is easier to implement.
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