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Abstract. Tree and shrub abundance has increased in many grasslands causing changes in
ecosystem carbon and nitrogen pools that are related to patterns of woody plant distribution.
However, with regard to spatial patterns of shrub proliferation, little is known about how they
are influenced by grazing or the extent to which they are influenced by intraspecific
interactions. We addressed these questions by quantifying changes in the spatial distribution
of Prosopis velutina (mesquite) shrubs over 74 years on grazed and protected grasslands.
Livestock are effective agents of mesquite dispersal and mesquite plants have lateral roots
extending well beyond the canopy. We therefore hypothesized that mesquite distributions
would be random on grazed areas mainly due to cattle dispersion and clustered on protected
areas due to decreased dispersal and interspecific interference with grasses; and that clustered
or random distributions at early stages of encroachment would give way to regular
distributions as stands matured and density-dependent interactions intensified. Assessments in
1932, 1948, and 2006 supported the first hypothesis, but we found no support for the second.
In fact, clustering intensified with time on the protected area and the pattern remained random
on the grazed site. Although shrub density increased on both areas between 1932 and 2006, we
saw no progression toward a regular distribution indicative of density-dependent interactions.
We propose that processes related to seed dispersal, grass–shrub seedling interactions, and
hydrological constraints on shrub size interact to determine vegetation structure in grassland-
to-shrubland state changes with implications for ecosystem function and management.

Key words; LISA; livestock exclusion; mesquite; Moran’s I; pair correlation function; point pattern
analysis; Prosopis velutina; Ripley’s K; Sonoran Desert; spatial autocorrelation; spatial ecology.

INTRODUCTION

The spatial arrangement and size of plants mediates

ecosystem function in water-limited ecosystems by

influencing soil erosion and deposition, decomposition,

spread of disturbance, and land use (Ludwig et al. 2005,

de Knegt et al. 2008, Neff et al. 2008). In ecosystems

undergoing state transitions, the reordering of plant

functional groups contributes to major shifts in ecosys-

tem function by eliciting changes in biophysical pro-

cesses (Ellison et al. 2005) and responses to external

drivers (Scheffer and Carpenter 2003). In grasslands and

savannas undergoing state-transitions caused by woody

plant proliferation (Van Auken 2000, Naito and Cairns

2011), structural changes are dramatic, with significant

consequences for ecosystem function (Barger et al. 2011,

Eldridge et al. 2011) and management (Bestelmeyer et al.

2011). Although increases in the abundance of shrubs

and trees have been widely reported, less emphasis has

been placed on how spatial patterns develop on

landscapes as new individuals are recruited and existing

plants grow. When woody plants proliferate in grass-

lands, changes in soil organic carbon and nitrogen pools

are closely tied to patterns of shrub distribution. A

better understanding of spatial patterns accompanying

woody cover change could therefore improve our ability

to predict landscape-scale changes in ecosystem carbon

and nitrogen cycling accompanying changes in vegeta-

tion structure, shed light on the relative importance of

the interacting factors driving or constraining shifts in

life-form abundance, and increase our understanding of

feedbacks involved with state transitions and their

thresholds (Peters et al. 2004).

Livestock grazing is the most geographically extensive

form of land use worldwide (Asner et al. 2004) and

heavy grazing by domestic herbivores in the late 1800s

and early- to mid-1900s is a shared history for many of

the world’s arid and semiarid ecosystems (hereafter

drylands; Ash et al. 1997, Holechek et al. 2000). Spatial

patterning of vegetation resulting from livestock grazing

can be substantial (Rietkerk et al. 2000), reflecting both

direct and indirect influences on seed dispersal, seedling

recruitment, gap formation, plant competition, soil

properties, and fire (Archer 1994, Fuhlendorf et al.
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2008). Woody plant proliferation in drylands often

occurs against this backdrop of altered patterns in the

soil surface and herbaceous cover. As the size and

density of shrubs increases atop this matrix, so too does

the spatial heterogeneity of soil properties (e.g., Throop

and Archer 2008) and the nature of erosion–fire

feedbacks (Okin et al. 2009, Ravi and D’Odorico

2009), typically culminating in the transition from

grass- to shrub-dominated states that represent major

shifts in ecosystem function (Archer 2010, Eldridge et al.

2011).

Studies on the effects of livestock grazing on

vegetation spatial patterns have largely focused on

herbaceous plants (Adler et al. 2001, Rayburn and

Monaco 2011). Grazing-induced changes in patterns of

species composition, above- and belowground biomass

and the size of non-vegetated gaps can influence woody

plant seedling emergence and survival (e.g., Jurena and

Archer 2003, Montané et al. 2012) and hence patterns of

shrub distribution (Seifan and Kadmon 2006). Further-

more, grazing may intensify shrub–inter-shrub contrasts

(Allington and Valone 2010). Studies that quantify

spatial patterns, spatially structured population dynam-

ics, and their change (e.g., Condit et al. 2000, Miriti

2007, Rayburn and Monaco 2011) therefore have the

potential to enhance our understanding of livestock

grazing influences on species interactions and environ-

mental heterogeneity in ways not possible with short-

term, fine-scale experiments.

Woody plant encroachment since the late 1800s/early

1900s has been well documented in desert grasslands of

southeastern Arizona (McClaran 2003). Analysis of

temporal changes in shrub cover revealed two distinct

phases on sandy loam uplands: an active encroachment

phase from 1900 through the 1930s, followed by a

stabilization phase from the 1960s through the present

(Browning et al. 2008). The encroachment phase was

characterized by pronounced net increases in woody

plant cover and transition from a perennial grass-

dominated state to a mixed savanna state, whereas the

stabilization phase was characterized by oscillations

around a mean of approximately 35% shrub canopy

cover to a shrubland state. A companion study, based

on census data from grazing exclosure plots established

in 1932 and re-mapped in 1948 and 2006, further

revealed that removal of livestock in this historically

grazed system resulted in enhanced shrub recruitment

relative to grazed areas over the 74-year period

(Browning and Archer 2011). With the current study

we sought to utilize spatially explicit records from the

plots established in 1932 to quantify how spatial

patterns of shrub distribution changed with these

changes in shrub cover and abundance and to determine

the extent to which the presence or removal of livestock

may have influenced those patterns. Although quantify-

ing spatial patterns may not permit clear identification

of the process or processes that generate them, it is akin

to the multiple working hypothesis approach (Cham-

berlin 1965) in that it can provide evidence that is

consistent with certain processes and rule out others

(Perry et al. 2006, Franklin 2010).

OBJECTIVES/HYPOTHESES

Our objectives were to use census data from 1932,

1948 and 2006 for the invasive shrub Prosopis velutina

(velvet mesquite) to compare an area historically grazed

by livestock since the mid-to-late 1800s to that of a

heavily grazed area subsequently protected from live-

stock since 1932. Our comparisons focused on: spatial

patterns of shrubs; spatial autocorrelation of shrub

density at plant neighborhood and plot scales; and

distances between shrubs (hereafter inter-shrub distanc-

es).

In addressing these objectives we tested hypotheses

regarding the effects of livestock removal on patterns

of shrub proliferation across space and time. In the

spatial dimension, we hypothesized that removal of

livestock would result in a greater degree of clustering

in mesquite individuals relative to areas where livestock

grazing has persisted. Although mesquite is dispersed

by both rodents (Glendening 1952) and livestock

(Kneuper et al. 2003), livestock are better vectors of

long-distance seed dispersal and are potentially more

effective in terms of the number of seeds dispersed and

enhancing the probability of successful germination

and establishment (Brown and Archer 1987). Removal

of the livestock seed dispersal vector should therefore

reduce recruitment away from parent plants and

thereby indirectly promote a clustered distribution at

short distances approximating canopy radii. Converse-

ly, livestock promote heterogeneity in vegetation via

grazing and trampling of emergent plants (Huntly

1991, Rayburn and Monaco 2011), so patterns on the

protected area are expected to be clustered relative to

the adjacent grazed site.

Shrub cover in recent decades at this site has

fluctuated around 35% (Browning et al. 2008), a level

that approximates the predicted carrying capacity for

woody vegetation for the mean annual rainfall at this

site (Sankaran et al. 2005). We therefore hypothesized

that in the temporal dimension, shrub distributions in

1948 would become regular (uniformly distributed) by

2006 as mesquite stands developed and matured. This

outcome would be expected if dispersal of mesquite

seeds by rodents and livestock and their subsequent

establishment was clumped or random during the

encroachment phase, with density-dependent interac-

tions (self-thinning) generating a regular distribution

during the stabilization phase as shrub cover ap-

proached and reached is maximum potential. In this

scenario, mean inter-shrub distances on grazed and

protected areas would be expected to initially have a

higher variance, followed by a net decrease from 1932 to

1948, then stabilize between 1948 and 2006 and be less

variable.
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METHODS

Study site

The study was conducted on the 21 514-ha Santa Rita

Experimental Range (SRER) 80 km south of Tucson,

Arizona along the western edge of the semi-desert

grassland region of the Sonoran Desert (Brown 1994;

31.813468 N, 110.88758 W). Annual precipitation in the

region is bimodal with a pronounced peak in late

summer (July–September monsoon) and a lesser peak in

winter. Mean annual precipitation (1922–2007) at the

Rodent Station rain gauge situated 0.3 km from our

plots was 354 mm with an average summer (June–

September) precipitation of 207 mm (SD ¼ 73) and an

average winter precipitation (October–May) of 147 mm

(SD¼ 69). Vegetation on the SRER ranges from Larrea

tridentata desert scrub at the lowest elevations to

Quercus spp. woodlands at the highest.

Mesquite (Prosopis spp.) is a leguminous shrub that

has extensively invaded grasslands in the Southern

Great Plains and southwestern United States. At the

SRER, velvet mesquite (P. velutina) is the dominant

shrub at 990–1200 m elevation and increases in its cover

and density since 1900 have been well documented

(McClaran 2003). Our study focused on a 0.8-ha portion

(200 3 40 m) of a plot established on the SRER by

William McGinnies in 1932 to evaluate herbivore effects

on vegetation on a sandy loam upland ecological site

(National Resource Conservation Service reference no.

R041XC319AZ; Breckenfeld and Robinett 2003) at 1100

m elevation. Soils are classified as Aridisols (fine, mixed,

superactive, thermic Ustic Paleargids; sandy clay loam

surface texture) in late Pleistocene-age Sasabe-Baboqui-

vari complex with an average maximum clay content of

25% at 23 cm depth (Browning et al. 2008). No fires

have been recorded on this site since the SRER was

established in 1902.

The SRER, representative of many of the grasslands

of the Southwestern United States, was severely

degraded by the turn of the 20th century, the result of

decades of heavy, year-round, unregulated cattle graz-

ing. Cattle were removed shortly after the SRER was

established in 1902 to promote vegetation recovery and

then reintroduced in 1916. Year-round grazing was

practiced from 1916–1972, with stocking rates steadily

decreasing from a maximum of 0.17 animal unit years

per hectare in 1918 (Browning et al. 2008). A rotational

grazing system was implemented in 1972 and maintained

through the time of our study (see Mashiri et al. 2008).

Field data collection

The 74-year record of mesquite stand structure

resulted from three exhaustive field census campaigns

conducted on plots established on the SRER by William

McGinnies in 1932. These plots were initially designed

to differentially exclude various combinations of live-

stock and lagomorphs, but only the livestock exclusion

treatments have been maintained since 1952. The 1932

and 1948 mapping efforts were conducted using a survey

instrument consisting of a telescopic alidade and plane

table (Glendening 1952). Plant locations on these maps

were digitized into a geographic information system

along with plants mapped in 2006 using a global

positioning system (GPS) to achieve ,0.5 m horizontal

accuracy. The geo-coding process for 1932 and 1948

maps yielded positional accuracy similar to that derived

from the 2006 GPS campaign (additional details can be

found in Browning and Archer 2011). The 2006 field

effort encompassed a 100 3 40 m area accessible to

lagomorphs and livestock since 1916 (hereafter, grazed

area) and an adjacent area of equal size protected from

livestock since 1932 (hereafter, protected area).

Analyses of spatial pattern on grazed and protected areas

Point pattern methods based on locations of individ-

uals and area methods based on continuous distribu-

tions were used to quantify spatial structure. These

combined approaches characterize patterns at multiple

spatial scales (Fortin and Dale 2005) and can reveal

patterns not discernible from one or the other (e.g.,

Barot et al. 1999). Hypothesized changes in mesquite

spatial patterns were evaluated against a null model of

complete spatial randomness (CSR) that describes a

pattern generated by a spatial Poisson process with a

constant first-order intensity (k) over the study region

(Fortin et al. 2002). We implemented CSR as the null

hypothesis assuming process stationarity, wherein the

effects of the presence or absence of livestock on the

establishment and arrangement of mesquite plants does

not change over time. In other words, neither the

removal of livestock nor the stage of shrub encroach-

ment would alter patterns of mesquite distributions. If

mesquite density is spatially non-stationary, the ability

to distinguish whether spatial patterns (i.e., clustering)

are due to first- or second-order interactions is

confounded (Wiegand and Moloney 2004). While null

models accounting for heterogeneity exist, parameteriz-

ing appropriate alternatives to CSR (i.e., choosing

cluster size for a Poisson cluster process or k for a

heterogeneous Poisson process) is problematic due to a

lack of independent data. Local spatial statistics are

unaffected by non-stationarity and were also examined.

The point and area statistics used in this study can

detect clustering or positive spatial autocorrelation

(values significantly greater than expected under CSR),

regular (uniform) patterns, or negative spatial autocor-

relation (values significantly less than expected under

CSR). Point pattern distributions were based on nearest

neighbor distances and all inter-point (plant–plant)

distances. Local and global area-based analyses were

used to quantify livestock removal effects on spatial

autocorrelation and patchiness in mesquite density.

Analysis of mesquite spatial patterns in 1932, the year

when fences were constructed and livestock were

removed from the protected area, were performed using

all plants regardless of whether they occurred inside or
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outside of the exclosure. Subsequent analyses for 1932,

1948, and 2006 were conducted for protected and grazed

plots separately to permit comparisons across time.

Second-order point pattern analysis and spatial

autocorrelation methods (e.g., statistics of spatial

variance) were used to determine if mesquite plants on

the protected area exhibited a higher degree of clustering

and patchiness than those on the grazed area; and at

what distances differences in the degree of clustering

occurred. The point pattern analyses quantified the

proportion of possible pairs of points (individual plants)

in Euclidean space whose members were within a certain

distance from one another. We implemented the

commonly-reported linearized version of Ripley’s K

L(r) (Ripley 1976) and the pair correlation function g(r)

(Stoyan and Stoyan 1994) using the spatstat package in

R version 1.22-1 (Baddeley and Turner 2005). Ripley’s

isotropic edge correction for rectangular study areas was

applied in both cases. This procedure rotates the point

pattern to estimate the point intensity outside the study

area (Ripley 1991). L(r) and g(r) were calculated using

1.0 m lags up to 20.0 m (one half distance of shortest

plot dimension).

Ripley’s K focuses on a point and counts the number

of other points around it within a specified radius;

counts are cumulative in that sequential distances

encompass all points included in the shorter lags. The

Ripley’s K calculations were made for each point in the

study area to obtain a global statistic. The number of

points within the specified radius was then compared to

the number of points expected based on a stationary

CSR Poisson process. In this study, Ripley’s K is

reported as L(r)� r for easier interpretation where zero

is the theoretical value or expected number of points at a

specified radius. A L(r) � r . 0 means there are more

points than would be expected. A L(r) � r , 0 means

there are fewer than expected.

To examine point patterns at a given distance, we

calculated the pair correlation function, g(r) (Stoyan and

Stoyan 1994), which depicts patterns based on nested

rings rather than the circles used to calculate the

cumulative L(r) � r metric. The g(r) looks at a

neighborhood of points surrounding the specified radius

and gives greater weight to points near the radius and

less weight to points further away. In this type of

weighting, known as an Epanečnikov kernel, points

lying outside the bandwidth are not considered in the

calculation at that radius. We used a bandwidth of 0.5

m, which approximates one-half of the distance between

1-m steps, to insure rings collectively covered the sample

space. Using the ‘‘envelope’’ command in spatstat, we

simulated 999 realizations of a pattern of CSR resulting

from a homogeneous Poisson process. The simulated

points had the same intensity (i.e., point density) as the

observed points. The g(r) and L(r) � r metrics were

calculated at each step for all 999 simulations. High and

low values of the envelopes were the maximum and

minimum statistic values at a given lag. We present the

L(r)� r metric to enable direct comparisons with values

reported in other studies and the g(r) metric to permit

interpretations at discrete distances.

Global Moran’s I (Moran 1950) and a local indicator

of spatial autocorrelation (LISA; Anselin 1995) were

used to quantify spatial autocorrelation of mesquite

across grazing treatments and time. We used 5 3 5 m

cells to characterize spatial heterogeneity in mesquite

density (number of shrubs per cell) because smaller sizes

would approximate the information conveyed in point

pattern analysis, and because this cell size approximated

the mean size of mesquite canopies when shrubs were

mapped in 1932. Global and local indicators of spatial

autocorrelation were calculated using GeoDa software

version 0.9.5-i (Anselin et al. 2006) for grazed and

protected areas. Moran’s I ranges from �1.0 signifying

dissimilarity between adjacent values to 1.0 signifying

similarity between adjacent values; the expected value

for a random (null) pattern is zero. We quantified

nearest neighbor correlations (single lag) between each 5

3 5 m cell and its eight neighbors. Significant deviations

from random patterns of association relative to the

mean density were determined using 999 random

permutations of Moran’s I for grazing and year

comparisons at a ¼ 0.05.

Local spatial statistics estimate the pattern for each

sample location and are useful when the assumption of

stationarity (a spatially homogeneous pattern-generat-

ing process) may be violated (Getis and Ord 1992). We

decomposed the global index of spatial association

(Moran’s I ) into contributions from local neighbor-

hoods using a LISA (Anselin 1995). A target (t) cell with

a high mesquite density surrounded by neighboring (n)

cells of similarly high mesquite density (high(t)–high(n))

could result from short-range seed dispersal (e.g.,

majority of seeds falling near parent plant), facilitation,

or favorable microsite conditions. Conversely, negative

spatial associations (high(t)–low(n) and low(t)–high(n))

could reflect competition for light or soil moisture or

allelopathy (Fortin and Gurevitch 2001).

Spatial patterns and stage of shrub encroachment

The hypothesis that the mean and variance of inter-

shrub distances would decrease with shrub stand

development was evaluated using two distance metrics:

the average distance between individual mesquite plants

and their nearest neighbor (NN) and the average

distance between random locations and the nearest

mesquite plant (empty space [ES] function; Baddeley

2010). The ES function is a metric for estimating the

degree of infilling, whereas the NN metric is more

sensitive to clustering of plants based on the single

nearest neighbor (Baddeley 2010). NN statistics were

calculated in ArcGIS version 10.0 using the Near

function (Environmental Science Research Institute

2004).We tested for differences in mean NN distances

using analysis of variance (ANOVA) between years by

grazing treatment and between treatments by year.
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Residuals for mean NN distances mildly violated the

normality assumption; analysis of natural log-trans-
formed data did not affect the conclusions. Multiple

comparisons were conducted using Tukey’s studentized
range tests.

The ES function was calculated using a 200 3 40 m
raster layer with 1.0-m pixels. The 1.0-m pixel size

coincided with the sampling interval (or lag distance)
for point pattern metrics. The mean distance to the
nearest mesquite plant for 4000 pixels in the grazed and

protected areas was calculated for each date using the
Euclidean Distance tool in ArcGIS. The scale-depen-

dent nature of the ES function prohibited use of
ANOVA.

RESULTS

Spatial pattern on grazed and protected areas

Mesquite plants in 1932 were not clustered on either
the grazed area or the area slated for livestock removal

(Fig. 1A). The null hypothesis of CSR could not be
rejected for either spatial metric at any lag distance on
either the grazed or protected areas when the study was

initiated (Fig. 1A, B). Mesquite plants on the protected
area in 1948 were clustered at short (1 and 2 m) and

intermediate (8 m) distances (Fig. 1C). Conversely,
mesquite plants on the grazed area in 1948 were

randomly distributed at all distances. Clustering of
mesquite on the protected area in 2006 was even more

pronounced and evident at all distances between 1 and
12 m (Fig. 1D), with peak clustering occurred at 1–2 m.

In contrast, there was no evidence of significant
clustering on the grazed area at any distance.

At the time plots were established in 1932, mesquite
densities were not spatially autocorrelated relative to

what would be expected under CSR for the area
designated for continued grazing (Moran’s I ¼ 0.047,

P¼ 0.104). In contrast, mesquite densities were weakly,
but positively autocorrelated on the area designated for

livestock removal (Moran’s I ¼ 0.082, P ¼ 0.026; Fig.
2A). The lack of spatial autocorrelation in mesquite

density on the grazed area was consistent across time,
whereas patterns in mesquite density on the protected
area become increasingly positively autocorrelated (2006

Moran’s I¼ 0.261, P¼ 0.001; Fig. 2A–C). The slope of
the line (i.e., Moran’s I value) remained flat for the

grazed area, but progressively increased on the protected
area owing to the development of high-density focal cells

surrounded by high-density neighboring cells.
Spatial patterns of local differences in neighbor

associations between grazed and protected areas are
further illustrated in Fig. 3. Positive associations (low-

density focal cells surrounded by low-density neighbor-
ing cells [designated ‘‘low–low’’] and high-density focal

cells surrounded by high-density neighboring cells
[designated ‘‘high–high’’]) were present on the area

slated for livestock and lagomorph exclusion, but were
not evident on the area designated for continued

livestock grazing. By 1948, additional areas of locally

high (dark red) and low (dark blue) shrub densities

(relative to random) had developed on both the grazed

and protected area, but were much more common and

pronounced in the protected area. The areas of relatively

high and low shrub density on the protected area

persisted to 2006, and in most cases, expanded in size to

magnify the spatial contrasts in shrub distributions on

grazed and protected areas. To illustrate linkages

between global and local measures of association, two

5 3 5 m subplots that deviated from mean density most

strongly on the protected plot are circled in Fig. 2 and

denoted by stars in Fig. 3.

Spatial patterns and stage of shrub encroachment

The shift toward regularity in mesquite plant distri-

butions hypothesized to occur with stand development

was not observed. In fact, the non-cumulative point

pattern metric g(r) demonstrated an increasingly clus-

tered distribution on the protected area from 1932 to

2006 (Fig. 1). Mean mesquite NN distances were

consistently lower on the protected area relative to the

grazed area in all years (Table 1; 1932 P¼ 0.014, 1948 P

¼ 0.003, and 2006 P ¼ 0.001). Mean NN distances

decreased significantly from 1932 to 1948 on both areas.

NN distances then stabilized on the grazed area between

1948 and 2006, but continued to decrease on the

protected area. Variance associated with NN distances,

as indicated by coefficients of variation (CV), remained

virtually constant from 1932 to 1948 on both grazed and

protected areas then declined slightly on both areas from

1948 to 2006.

The mean ES metric (mean distance from a given

point to the nearest mesquite plant) also declined on the

two areas over time, more so on the protected area than

on the grazed area, and in 1948 and 2006 their rank

order was reversed (Table 1; Fig. 4). Empty space

distances continued to decline on both areas from 1948

to 2006, but more so for the protected area.

DISCUSSION

There is active debate regarding the factors contrib-

uting to the destabilization of the balance between

woody and herbaceous life-forms that has occurred in

recent decades to favor trees and shrubs over grasses in

many semi-arid and arid regions (Scholes and Archer

1997, Archer 2010). The majority of studies have

focused on tree–grass or shrub–grass interactions and

the extent to which these contrasting life-forms may

partition soil, water, or nutrient resources in time (e.g.,

phenology) or space (e.g., contrasting root systems)

and how climate and disturbance might alter these

interactions. Few have looked at spatial patterns. What

is lacking is an understanding of how interactions

between woody plants might influence patterns of

increasing density when interactions with herbaceous

vegetation are disrupted and the extent to which

density-dependent interactions might limit their max-

imum potential cover or biomass. Spatial pattern
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FIG. 1. Univariate point pattern metrics (insets, linearized version of Ripley’s K [L(r)� r] and pair correlation function [g(r)])
derived from mesquite locations mapped in 1932, 1948, and 2006. Metrics (black lines) were calculated at 1.0 m intervals up to 20
m. The simulation envelope (gray shading) depicts the upper and lower limits from 999 Monte Carlo simulations. A black line
outside the gray shaded envelope indicates clustering (line above) or over-dispersion (line below) than expected due to chance at a
given distance. Within the simulation envelope, the metric does not differ from that expected at random.
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analyses and experimental removal studies have ex-

plored woody plant spacing to assess competition

between woody plants and the results are equivocal

(reviewed by Sea and Hanan [2011]). With this study we

sought to infer the intensity of intraspecific shrub–

shrub interactions from quantitative analyses of spatial

associations over decadal timescales and how these

might be mediated by the removal of livestock.

Spatially explicit historical census records are uncom-

mon and tend to be collected at a relatively small spatial

extent (Miriti et al. 1998, Bowers et al. 2004). To gauge

whether our results represent larger surrounding land-

scapes, we were limited to estimates of shrub cover. We

quantified changes in shrub cover using time series aerial

photography (1936, 1971, 1996, 2005) of three addition-

al livestock exclosures on the SRER and the grazed

areas surrounding them. Shrub cover on these adjacent

sites generally, with comparable soils, tracked those

reported for plots in Browning and Archer (2011) and

expanded herein, with cover values on the protected

areas being consistently higher than those on the grazed

areas (data not shown). Additionally, 1932 and 1948

field estimates of plant size and density within the 0.4 ha

grazed and protected areas in this study were within the

range of values reported by Glendening (1952) for two

1.8 ha plots (see Fig. 2; Browning and Archer 2011).

Thus, there is reason to believe that shrub dynamics

reported herein are indicative of changes occurring over

a broader area.

Contrasting spatial patterns on grazed

and protected areas

Mesquite plants on the protected site were somewhat

more aggregated than those on the grazed site when

livestock were excluded in 1932. These subtle initial

differences in spatial autocorrelation may reflect

chance or local variation in subsurface soil properties

known to occur on these landscapes (Breckenfeld and

Robinett 2003). Although soils on both areas were

classified similarly, soils are mapped as ‘‘complexes’’

and inclusions have been estimated to constitute 10–

15% of each soil complex (Breckenfeld and Robinett

1997). Third-order soil surveys are generally based on

minimal distributed sampling. A detailed, spatially

explicit sampling of sub-surface soil properties within

the two areas would clarify these competing interpre-

tations.

We hypothesized that the presence of livestock would

promote random patterns of mesquite distribution,

whereas their removal would promote clustering. The

evidence supported this hypothesis. Mesquite density

increased on both the grazed and protected site, but

spatial autocorrelation and the development of high-

density patches intensified with time on the protected

area through the development of clusters at short

distances and subsequent infilling, but did not deviate

from random on the grazed area (Figs. 1–3). If

independent data had been available to parameterize

FIG. 2. Global Moran’s I (inset values) and scatter plot of
the standardized density of mesquite plants within 535 m focal
cells in relation to that of its eight neighboring cells on grazed
(filled circles, dashed regression lines) and protected (open
triangles, solid lines) plots in (A) 1932, (B) 1948, and (C) 2006.
Moran’s I ranges from �1.0, signifying dissimilarity between
adjacent values, to 1.0, signifying similarity between adjacent
values; the expected value for a random (null) pattern is zero.
Density designations represent focal cells–surrounding cells
(e.g., ‘‘high–high’’ denotes a high-density focal cell surrounded
by high-density neighboring cells). Data for 1932 represent
conditions present when livestock exclosures were constructed.
P values are based upon 999 randomizations. To illustrate
linkages between global and local measures of association, two
cells that deviated from mean density most strongly are
identified in panels (B) and (C) with circles and in Fig. 3 with
stars.
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a heterogeneous null model, we may have been less

likely to detect significant clustering on the protected

site. However, the pattern differences between the

grazed and protected areas, and their maintenance and

intensification over time, were supported by multiple

lines of evidence (global and local, point and area

statistics).

The promotion of random mesquite distributions by

livestock ostensibly reflects a combination of factors.

Cattle are well known for their ability to disperse large

numbers of viable seeds away from parent plants and

thus provide numerous opportunities for recruitment

across a landscape (Brown and Archer 1987). In

addition, widespread grazing by livestock may uni-

formly reduce herbaceous interference, thereby provid-

ing more sites suitable for shrub seedling establishment

(e.g., Seifan and Kadmon 2006). Conversely, the

clustering of mesquite plants observed on the area

protected from livestock presumably reflects fewer

opportunities for recruitment away from parent plants

owing to dual constraints imposed by limited seed

dispersal and an herbaceous matrix comprising more

FIG. 3. Local indicator of spatial association (LISA) cluster maps and associated global Moran’s I values for mesquite plant
density within 320 5 3 5 m cells (dotted lines). Mesquite density designations (high and low as per Fig. 2) represent focal cells–
surrounding cells. White cells indicate associations are not significantly different from random. P values are based upon 999 Monte
Carlo simulations. The top panel uses all data to depict density patterns in 1932 when exclosures were constructed. The remaining
panels use treatment-specific density data. Cells with strongest deviations from mean density are denoted with black stars (see also
circled points in Fig. 2). Animal profiles indicate livestock and lagomorph presence. Symbols in a red circle with a line through it
indicate livestock and lagomorph exclusion.
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competitive plants and hence a restricted subset of

locations for shrub seedling establishment. These

contrasting scenarios point to the need for a better

understanding of seed dispersal and grass–shrub

seedling interactions and the integration of these

competing perspectives into a framework for predicting

the effects of alternative livestock management prac-

tices on the shrub encroachment process.

TABLE 1. Mesquite plant population metrics, spatial statistics, and empty space distance for mesquite plant locations within 1003
40 m areas grazed by or protected from livestock since 1932.

Year

Density (no. plants/ha) Canopy area (m2) Nearest neighbor (m) Empty space (m)

Grazed Protected Grazed Protected Grazed Protected Grazed Protected

1932 172.5 202.5 4.0A,a (0.70) 3.0B,a (0.70) 4.0 (0.55) 4.6 (0.72) 7.0A (1.3) 4.7A (3.0)
1948 317.5 602.5 2.6A,b (0.69) 2.0B,b (0.70) 3.1 (0.57) 2.3 (0.66) 6.0A (1.0) 3.6B (0.7)
2006 442.5 960.0 2.4A,b (0.54) 1.6B,c (0.63) 2.6 (0.59) 1.8 (0.61) 3.8A (0.6) 2.5B (0.2)

Notes:Mesquite plant population metrics are density and canopy area. Values for canopy area are means with SE in parentheses.
Spatial statistics are distance to nearest neighbor (NN, mesquite-to-mesquite) and its coefficient of variation in parentheses (CV¼
SD/mean), and empty space distance (distance from the center of a given 1.0 3 1.0 m cell to nearest mesquite plant and its CV in
parentheses). Significant differences (a ¼ 0.05) across treatments are denoted with capital letters; differences between years are
denoted with lower case letters (means that share a letter are not significantly different). See Fig. 4 for patterns of empty space
distribution.

FIG. 4. Maps depicting the distance in meters from a given 1.0-m pixel (8000 total pixels) to the nearest mesquite plant in 1932,
1948, and 2006. Maximum distances (upper right of each panel) are for the entire area; see Table 1 for mean distances on grazed vs.
protected areas. Livestock were excluded from the right half of the area starting in 1932. Prior to that time, the entire area had been
heavily and continuously grazed.
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Spatial patterns and stage of shrub encroachment

Nearest neighbor and second-order spatial statistics
have been used to demonstrate regular patterns among

woody plants and infer intraspecific competition (e.g.,
Smith and Goodman 1986, Getzin et al. 2006, Meyer et

al. 2008). We hypothesized that the distribution of
mesquite would become increasingly regular as mesquite

stands transitioned from the encroachment phase to the
stabilization phase. Mesquite density increased substan-

tially on both the grazed and protected site throughout
the 74-yr period (Table 1) and mesquite associations in

the protected area exhibited a higher degree of
patchiness with spatial associations both higher and

lower than expected, yielding pockets of high and low
mesquite density (Fig. 3). Thus, there should have been

ample opportunity for density-dependent interactions to
promote a regular spatial distribution, particularly on

the protected site where densities were substantially
higher. However, we saw no evidence that shrub
recruitment was leveling off and no evidence of a

progression toward a regular distribution that might
indicate self-thinning or intraspecific density-dependent

interactions. To the contrary, spatial aggregation on the
protected area became more pronounced through 1948

and 2006.
There are several lines of evidence suggesting shrub–

shrub interactions should intensify as shrub abundance
increases. Field studies in desert systems have long noted

both clumped and regular patterns of shrub distribution
and the occurrence of overlapping root systems, and

from this have inferred that distributions shift from
clumped to regular as shrubs grow and stands develop

(e.g., Phillips and MacMahon 1987, Wiegand et al.
2005). These inferences have been supported, at least

partially, by neighbor removal experiments (Fonteyn
and Mahall 1981, Manning and Barbour 1988, Ansley et

al. 1998) and time-series aerial photos showing declines
in rates of shrub cover increase with increasing shrub

cover (Fensham et al. 2005) and shifts from clustered to
regular distributions (Goslee et al. 2003). Furthermore,
mesquite plants on our site have extensive shallow

lateral root systems that extend well beyond their
canopies (Cable 1980). These shallow roots are impor-

tant to plant water balance (Ansley et al. 1991) and
ostensibly influence intraspecific competition for soil

resources. Indeed, field data from the Santa Rita site
have documented decreases in shrub growth rates

(Glendening 1952) and declines in the probability of
shrub recruitment (Browning and Archer 2011) with

increasing shrub abundance. Furthermore, continental-
scale assessments suggest that mean annual precipitation

(MAP) sets the upper limit for potential shrub cover
(Sankaran et al. 2005). Shrub cover on landscapes with

soils similar to those on the long-term plots in our study
have approximated the predicted upper limit (approxi-
mately 37% for 370 mm MAP; Browning et al. 2008),

suggesting there has been ample time for shrub–shrub
interactions to influence patterns of association. Thus,

there are numerous reasons to expect the intensity of

shrub–shrub interactions to increase with time on this

site. Why then have we not seen evidence of self-thinning
on our long term plots?

Field-estimated shrub cover on our long-term plots in

2006 (15–22% on grazed and protected areas, respec-

tively; Browning and Archer 2011) was well below the

predicted maximum for our annual rainfall (37%,

Sankaran et al. 2005). These low cover values likely
reflect a pasture-wide herbicide application in 1964 and

1965 conducted as part of range management study.

This would not necessarily have influenced patterns of

association, as shrubs vegetatively regenerated quickly
after the herbicide application (see Browning and Archer

[2011] for details). Even so, it reduced shrub cover and

may have relaxed the intensity of plant interactions. It

could also be that intraspecific competition in this
system is minimal. This possibility is consistent with the

tendency toward more pronounced spatial aggregation

with time on the protected area (Figs. 1, 3, 4) and with

results from field experiments showing little or no shrub
response to neighbor removals in other systems (Miller

and Huenneke 2000, Simmons 2003).

If intraspecific competition is not important, what

then what might explain the limits to woody cover

imposed by mean annual precipitation predicted by

Sankaran et al. (2005) and locally documented by
Browning et al. (2008) for our study site? One hypothesis

is related to potential hydraulic constraints on shrub size

in dryland systems (e.g., Sperry and Hacke 2002, Hacke

et al. 2006). As shrubs approach their upper size limit
for a site with a given soil texture, depth, topographic

setting, etc., their ability to maintain continuity in xylem

water transport may become increasingly jeopardized

and lead to higher probabilities of branch or whole-
canopy mortality. This loss of plant branch systems or

canopies would constitute reductions in canopy cover

that would have to be compensated for by recruitment

of new plants or growth of other, smaller plants if stand-
level canopy cover were to be maintained. Support for

this proposition comes from observations of height

asymptotes and shifts in leaf–stem biomass allocation

for mesquite in a variety of Chihuahuan Desert

landforms (Martinez and Lopez-Portillo 2003); and the
utility of allometry theory in characterizing size–

abundance relationships within creosote bush stands

(Larrea spp.; Allen et al. 2008).

Mechanisms imposing the upper limits of woody plant

stature and density on this site thus remain open to
speculation. However, their elucidation has important

implications for predicting the effects of tree and shrub

proliferation in drylands, a globally extensive phenom-

enon, on land-surface–atmosphere interactions, primary
production, and carbon cycling.
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