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Abstract d13C values of C3 plants are indicators of plant

carbon–water relations that integrate plant responses to

environmental conditions. However, few studies have

quantified spatial variation in plant d13C at the landscape

scale. We determined variation in leaf d13C, leaf nitrogen

per leaf area (Narea), and specific leaf area (SLA) in April

and August 2005 for all individuals of three common

woody species within a 308 9 12-m belt transect spanning

an upland–lowland topoedaphic gradient in a subtropical

savanna in southern Texas. Clay content, available soil

moisture, and soil total N were all negatively correlated

with elevation. The d13C values of Prosopis glandulosa

(deciduous N2-fixing tree legume), Condalia hookeri

(evergreen shrub), and Zanthoxylum fagara (evergreen

shrub) leaves increased 1–4% with decreasing elevation,

with the d13C value of P. glandulosa leaves being 1–3%
higher than those of the two shrub species. Contrary to

theory and results from previous studies, d13C values were

highest where soil water was most available, suggesting

that some other variable was overriding or interacting with

water availability. Leaf Narea was positively correlated with

leaf d13C of all species (p \ 0.01) and appeared to exert the

strongest control over d13C along this topoedaphic gradi-

ent. Since leaf Narea is positively related to photosynthetic

capacity, plants with high leaf Narea are likely to have low

pI/pa ratios and therefore higher d13C values, assuming

stomatal conductance is constant. Specific leaf area was not

correlated significantly with leaf d13C. Following a pro-

gressive growing season drought in July/August, leaf d13C

decreased. The lower d13C in August may reflect the

accumulation of 13C-depleted epicuticular leaf wax. We

suggest control of leaf d13C along this topoedaphic gradient

is mediated by leaf Narea rather than by stomatal conduc-

tance limitations associated with water availability.

Keywords Carbon isotope discrimination �
Leaf nitrogen � Specific leaf area � Soil moisture �
Photosynthetic capacity

Introduction

Quantification of spatial variability in leaf carbon isotope

composition (d13C) across the landscape affords an

opportunity to evaluate plant–environment interactions and

plant responses to environmental change (Adams and

Grierson 2001; Dawson et al. 2002). Many studies have

quantified leaf d13C variation along environmental gradi-

ents, particularly altitudinal gradients in mountainous

regions (Korner et al. 1988; Cordell et al. 1999; Hultine

and Marshall 2000). An increase in d13C with altitude has

been observed in many plant species and appears to result

from variations in precipitation (Van de Water et al. 2002),

temperature (Panek and Waring 1995), and/or nutrient

availability (Schulze et al. 1998) along these gradients.
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However, less is known about variations in leaf d13C along

more subtle topoedaphic gradients where the macroclimate

is the same, but where changes in soil moisture, texture and

nutrients may interact to influence plant carbon–water

relations and leaf d13C.

In C3 plants, the carboxylation enzyme Rubisco

(ribulose 1�5-bisphosphate carboxylase/oxygenase) dis-

criminates against 13C during photosynthesis. This effect is

moderated by the ratio of CO2 partial pressure at the car-

boxylation sites (pI) to that in ambient air (pa), which is

strongly determined by stomatal aperture and photosyn-

thetic capacity (Farquhar et al. 1982, 1989). Plants with

lower pI/pa ratios usually have higher leaf d13C values

(Farquhar et al. 1982). Therefore, a wide range of intrinsic

plant characteristics and environmental variables play roles

in determining leaf d13C through effects on pI/pa. For

example, both leaf Nmass (leaf N per leaf dry mass) and leaf

Narea (leaf N per leaf area) have been reported to be pos-

itively related to leaf d13C by elevating photosynthetic

capacity and lowering pI (Morecroft and Woodward 1996;

Sparks and Ehleringer 1997; Wright et al. 2003; Ham-

erlynck et al. 2004). Similarly, irradiance (Zimmerman and

Ehleringer 1990; Arthur et al. 2001) and air temperature

have been found positively correlated to leaf d13C (Panek

and Waring 1995), while precipitation is negatively cor-

related to leaf d13C (Stewart et al. 1995; Ferrio and Voltas

2005). Although process studies have revealed how leaf

d13C responds to specific abiotic factors, we know little of

how these interact to influence the d13C of the foliage in

plant canopies along landscape-scale gradients during a

growing season.

Since the pI/pa ratio is also related to plant water-use

efficiency [WUE; ratio of CO2 assimilation over transpi-

ration (A/E)], it has often been noted that leaf d13C and

WUE are positively related via pI/pa (Farquhar et al. 1982;

Ehleringer and Cooper 1988; Mooney et al. 1989; Stewart

et al. 1995; Saurer et al. 2004). In some cases, plants

located on drier portions of a landscape have higher leaf

d13C, suggesting higher WUE (Comstock and Ehleringer

1993; Anderson et al. 1996). In other cases, the reverse is

true. For example, Read and Farquhar (1991) found a

positive relationship between water availability and leaf

d13C of Nothofagus species in New Guinea. They specu-

lated that because soil moisture was seldom limiting in

their study area, other factors, such as soil nutrients, may

have been dictating leaf d13C. Similarly, Schulze et al.

(1998) found that variation in leaf Nmass rather than vari-

ation in annual rainfall determined community-averaged

leaf d13C in northern Australia. Zhang and Marshall (1995)

reported lower leaf d13C from dry environments and

speculated that there could be differential sensitivity of

stomatal conductance to water availability among different

species. Therefore, caution should be taken while

interpreting the link between leaf d13C and WUE for nat-

ural vegetation because numerous biotic and abiotic factors

and their interactions may influence d13C (Vitousek et al.

1990; Griffiths et al. 2000).

In arid and semiarid regions, topographic variation is a

strong determinant of plant carbon–water relations through

its impacts on soil water availability and rates of biogeo-

chemical processes that determine the availability of

limiting nutrients (Ehleringer et al. 1998; Hamerlynck et al.

2004). The objectives of our study were to: (1) quantify

landscape-scale variations of leaf d13C along a topoedaphic

gradient varying in soil texture, soil moisture, and soil

fertility in a subtropical savanna parkland landscape; (2)

evaluate potential controls over these isotopic variations.

To examine inter- and intraspecific variability in leaf d13C,

we focused on three woody plant species differing in

growth form that were ubiquitous along the gradient: a

deciduous N2-fixing tree (Prosopis glandulosa Torr. var.

glandulosa), and two evergreen shrubs [Condalia hookeri

M.C. Johnst. and Zanthoxylum fagara (L.) Sarg.]. Leaf

d13C, specific leaf area (SLA), and leaf Narea were mea-

sured early and late in the growing season to test the

following hypotheses: (1) leaf d13C is negatively correlated

with the availability of soil moisture along the topoedaphic

gradient; (2) leaf Narea is positively correlated with leaf

d13C due to its influence on photosynthetic capacity; (3)

SLA is negatively correlated with leaf d13C due to its

influence on leaf internal resistance to CO2 diffusion; (4)

leaf d13C of P. glandulosa is lower than that of the other

two species due to its N2-fixing ability; (5) seasonal

drought will increase leaf d13C values of all species.

Material and methods

Study area

This research project was conducted at the Texas Agri-

cultural Experiment Station La Copita Research Area

(27�400N; 98�120W; elevation 80 m a.s.l.) in Jim Wells

County, 15 km SW of Alice, Texas in the eastern Rio

Grande Plains of Tamaulipan Biotic Province. The climate

of the region is subtropical, with a mean annual tempera-

ture of 22.4�C and mean annual precipitation of 680 mm.

Rainfall maxima occur in May–June and September; while

July and August are typically the driest (and warmest)

months of the year.

Landscapes at La Copita typically grade (1–3% slopes)

from sandy loam uplands to clay loam and clay lowlands

which receive runoff from the uplands and may have

standing water after large rainfall events. Upland soils are

primarily Typic Argiustolls with a subsurface argillic

horizon; however, patches of Typic Ustochrepts lacking an
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argillic horizon are also found in the uplands (Archer

1995). Upland vegetation is savanna parkland consisting of

discrete woody clusters 3–10 m in diameter (comprised of

a single P. glandulosa trees with up to 15 understory tree/

shrub species) and larger groves 10 to [20 m in diameter

(comprised of several woody clusters that have fused

together) embedded within a matrix of grassland vegeta-

tion. Clusters and groves are dominated by P. glandulosa

and Z. fagara. Prosopis glandulosa and several other

leguminous trees and shrubs present in wooded areas are

capable of symbiotic N2-fixation (Zitzer et al. 1996).

Soils in lower lying drainage woodlands are generally

Pachic Argiustolls and are covered by closed-canopy

woodlands similar in composition to upland clusters and

groves. Playas are closed-basin depressions that occur

within the drainage woodlands and occupy the lowest

portions of the landscape. Playa soils are Ustic Epiaqu-

erts and Vertic Argiaquolls, and vegetation there consists

of a continuous grass layer dominated by Paspalum

pubiflorum and Bothriochloa ischaemum, with P. glan-

dulosa and Acacia farnesiana trees of variable density

(Farley 2000).

Woody plant encroachment has occurred throughout

the study area over the past 75–100 years due to the

interaction of heavy livestock grazing and reduced fire

frequency (Archer 1995). Archer (1995) and Boutton

et al. (1998) present additional details on soils, vegetation,

and climate.

Transect description

A 308-m transect spanning a hillslope gradient from an

upland through a drainage woodland and into a playa was

established. All five of the major landscape elements at the

study site (grasslands, clusters, groves, drainage wood-

lands, and playa) occurred along the transect. The transect

was marked with steel posts at 1-m intervals and was

georeferenced by global positioning system (GPS path-

finder Pro XRS; Trimble Navigation, Sunnyvale, CA) at

5-m intervals. Elevations were determined by surveying.

Plant and soil sampling and analysis

Two soil cores (0–15 cm) were collected at 1-m intervals

along the transect in April 2005. One core was used to

determine soil particle size distribution (pipette method;

Gee and Bauder 1986); the other was used to determine soil

total N by combustion/gas chromatography (Carlo Erba

EA-1108 elemental analyzer; CE Elantech, Lakewood, NJ)

following procedures outlined in Harris et al. (2001).

Another set of soil cores were collected at 3-m intervals

and weighed before and after drying at 105�C to determine

gravimetric (GWC) and volumetric water content (VWC).

Plant-available VWC was computed from total VWC and

soil texture using the equations of Cosby et al. (1984),

assuming a matric potential at wilting point of -10.0 MPa.

Soil water content was not quantified in August 2005

because significant rainfall occurred the day prior to plant

tissue sampling; hence, soil moisture would not have

reflected the antecedent soil moisture conditions that would

have influenced our plant response variables in August.

Three common woody species were selected for isotopic

analyses: (1) P. glandulosa, (2) C. hookeri, and (3) Z. fagara.

Biological characteristics of these species are summarized in

Table 1. Leaf tissue of the three study species was sampled

from all individuals occurring within 6 m on either side of

the 308-m transect in April and August 2005. For P. glan-

dulosa, approximately 10 g of fully expanded, south-facing,

sun-lit leaves in the upper canopy were sampled. For C.

hookeri and Z. fagara, approximately 10 g of fully expan-

ded, south-facing, leaves located in the upper canopy

approximately 1–2 m above ground level were sampled. The

spatial coordinates of each plant sampled within the

12 9 308-m area were recorded by measuring the distance

along and perpendicular to the central transect line.

Leaf area was measured on fresh tissue using a leaf area

meter (CI-202; CID, Vancouver, WA, USA). Leaves were

then oven dried for 48 h at 60�C and weighed. Specific leaf

area was calculated as the ratio of leaf area to leaf dry

weight. Leaves were then pulverized in a centrifugal mill

(Angstrom, Belleville, MI). d13C and leaf Nmass (g kg-1)

Table 1 Plant species characteristics in the study area

Species Family Growth habit

(max. height, m)

Leaf texture Initiation

of spring

regrowth

Timing of

maximum

numbers

of leaves

Functional

rooting

depth (m)

Prosopis glandulosa Fabaceae Deciduous tree (\10) Coriaceous March June–July 2–3

Zanthoxylum fagara Rutaceae Evergreen shrub (\4) Coriaceous-

malacophyllous

March–April July–August 1–2

Condalia hookeri Rhamnaceae Evergreen shrub (\4) Malacophyllous March–April July–August 1–2

Data on growth habit, leaf texture, and phenology are from Nelson et al. (2002), and functional rooting depths are based on d2H and d18O of plant

and soil water (Boutton et al. 1999)
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were determined using an elemental analyzer (Carlo Erba

EA-1108; CE Elantech, Lakewood, NJ) interfaced with an

isotope ratio mass spectrometer (Delta Plus, Thermo Elec-

tron, Waltham, MA) operating in continuous flow mode.

Carbon isotope ratios are presented in d notation:

d ¼ ½ðRSAMPLE � RSTDÞ=RSTD� � 103

where RSAMPLE is the 13C/12C ratio of the sample and RSTD

is the 13C/12C ratio of the V-PDB standard (Coplen 1996).

The precision of duplicate measurements was ±0.1%. Leaf

Narea (g m-2) was calculated by dividing leaf Nmass by

SLA.

Temperature and rainfall data from December 2004 to

August 2005 were obtained from the Alice, TX weather

station approximately 15 km from the study site (available

at http://www.ncdc.noaa.gov).

Statistical analyses

A univariate general linear model ANOVA was used to test

for the differences in leaf d13C with respect to landscape

locations, sampling seasons, species, and their interactions.

Fisher’s least significant difference (LSD) method was

used to distinguish differences following ANOVA.

Regression analyses were performed to determine the sig-

nificance of relationships between leaf Narea, SLA, plant

available water, and leaf d13C. Stepwise multiple linear

regression was performed to determine if certain combi-

nations of plant and/or environmental variables could be

used to predict leaf d13C. Analysis of covariance

(ANCOVA) was used to compare the slopes of the relation

for leaf Narea versus leaf d13C between the two sampling

seasons. All statistical analyses were performed using the

SPSS 10.0 program (SPSS, Chicago, IL).

Results

Temperature and rainfall during study period

Average monthly temperatures during February (17.1�C),

March (19.1�C), and April (22.8�C) of 2005 were above

the 110-year mean at Alice, TX (Fig. 1). Monthly rainfall

in both February (64.3 mm) and March (62.2 mm) was

approximately 60% above the 110-year mean, however,

rainfall during April (2.54 mm) was only 6% of the 110-

year mean.

Average monthly temperatures during May, June, July

and August of 2005 were 26.2, 29.4, 30.7, and 31.4�C,

respectively (Fig. 1). These temperatures were all above

the 110-year mean for those months. Monthly rainfall

during the same period was 41.4 mm (May), 3.3 mm

(June), 64.8 mm (July) and 8.6 mm (August), which was

either substantially less than or comparable to the 110-year

mean for those months. Hence, conditions prior to the April

foliage sampling were relatively warm and mesic, while

those preceding the August foliage sampling were com-

paratively hot and dry.

Transect characteristics

Elevation along the transect ranged from 84.5 to 86.5 m

a.s.l. (Fig. 2a). Although subtle, these variations in ele-

vation have induced significant variation in soil particle

size distribution (Fig. 2b), soil water content (Fig. 2c), and

soil total N (Fig. 2d). Soil clay content, plant available

water and soil total N were all negatively correlated with

elevation (Table 2). Soil clay content increased as eleva-

tion decreased along the transect, with values of

approximately 100 g kg-1 in the uplands, 100–200 g kg-1

in the drainage woodlands, and 250–350 g kg-1 in the

playas (Fig. 2b). Both soil VWC and plant available VWC

were related to elevation and texture, with the highest

values in playas (plant available VWC = 0.10 m3 m-3)

and the lowest values in uplands (plant available

VWC = 0.01 m3 m-3) (Fig. 2c). Plant-available VWC

was always significantly less than the total VWC, espe-

cially in the playas where clay content was the highest.

Soil total N was related to both elevation and vegetation

cover, with higher values in the lower lying drainage

woodlands and playas (1–5 g N kg-1 soil) than in the

uplands (0.6–2 g N kg-1 soil), and higher values in the

woody vegetation types (1–5 g N kg-1 soil in grove,

cluster and woodland communities) than in the grassland

(0.6 g N kg-1 soil) (Fig. 2d).
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Leaf d13C values

All three variables [species (S), landscape locations (L) and

date (D)] had significant main effects on leaf d13C

(Table 3). Mean leaf d13C of P. glandulosa (-25.7%) was

significantly lower than that of C. hookeri (-27.8%) and Z.

fagara (-27.4%) (Table 3; Fig. 2e–g), and mean leaf d13C

of woody plants in uplands (-27.2%) was significantly

lower than those in lower lying woodlands (-26.5%) and

playas (-26.3%). Leaf d13C of all three species averaged

-26.4% in April, which was significantly higher than that

in August (-27.0%) (Table 3). Leaf d13C of P. glandulosa

in April (-24.9 ± 0.13%) was significantly higher than

that in August (-26.2 ± 0.13%) (Table 3; Fig. 2e).

However, leaf d13C of C. hookeri and Z. fagara in April

(-27.5 ± 0.13 and -27.2 ± 0.11%, respectively) and

August (-27.8 ± 0.13 and -27.2 ± 0.11%, respectively)

were statistically similar (C. hookeri was not present in the

playa). Accordingly, the interaction between species and

date was significant.

Correlations between plant d13C and biological

and environmental variables

There was a significant negative correlation between leaf

Narea and elevation for P. glandulosa in both April and

August (p \ 0.05) (Table 2). The significant negative cor-

relations between leaf Narea and elevation observed for
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C. hookeri and Z. fagara in August were not evident in

April. There was a significant positive correlation between

leaf Narea and leaf d13C for all species in April (P. glan-

dulosa, R2 = 0.15, p \ 0.01; C. hookeri, R2 = 0.20,

p \ 0.001; Z. fagara, R2 = 0.19, p \ 0.001) and August

(P. glandulosa, R2 = 0.11, p \ 0.01; C. hookeri, R2 = 0.23,

p \ 0.001; Z. fagara, R2 = 0.23, p \ 0.001) (Fig. 3c).

There was also a significant negative correlation

between SLA and elevation for all species on both dates

(p \ 0.001) (Table 2). Leaf d13C tended to increase with

SLA for all three species, however, this relationship was

not significant (Fig. 3b). Relationships in April and August

were consistent for all three species.

Plant available water was not related to leaf d13C for

either C. hookeri or Z. fagara in April 2005. However,

water availability was positively correlated with leaf d13C

for P. glandulosa (R2 = 0.11, p \ 0.01) (Fig. 3a).

Stepwise multiple linear regression analysis was per-

formed to test the effects of soil available water, SLA, and

leaf Narea on leaf d13C of each species. Leaf Narea was the

only variable that accounted for a significant proportion

(p \ 0.01) of the variation in leaf d13C.

Seasonal variation in plant d13C

Leaf d13C values of P. glandulosa were significantly higher

than those of the other two species (Table 3). The d13C

value of P. glandulosa leaves was more negative in August

(mean = -26.2%) than April (mean = -24.9%), but it

did not change with time for the other two species

(Table 3).

ANCOVA comparisons of the slopes of the linear

regression lines of leaf Narea versus leaf d13C in April and

August revealed no significant differences for either

C. hookeri or Z. fagara at a = 0.05. The regression slopes

were significantly different for P. glandulosa between the

two dates.

Table 2 Pearson’s correlation coefficients for elevation vs. soil

properties, and elevation vs. plant properties along a hillslope gradient

Elevation

April August

Soil properties

Clay -0.617** –

Plant available VWC -0.575** –

Soil total N -0.543** –

Plant properties

Leaf d13C Prosopis glandulosa -0.260* -0.306*

Condalia hookeri -0.430** -0.464**

Zanthoxylum fagara -0.357** -0.346**

Leaf Narea Prosopis glandulosa -0.379** -0.327*

Condalia hookeri -0.239 ns -0.301*

Zanthoxylum fagara -0.035 ns -0.242**

SLA Prosopis glandulosa -0.565** -0.613**

Condalia hookeri -0.552** -0.488**

Zanthoxylum fagara -0.541** -0.308**

* p \ 0.05; ** p \ 0.01; ns, not signficant ( p [ 0.05)

SLA, Specific leaf area; VWC, volumetric water content

Table 3 Leaf d13C (%) in

different species (S), landscape

locations (L) and date (D)

a Values followed by different

letters indicate differences

between means (Fisher’s LSD

analysis; a = 0.05), for a given

source of variation, means

followed by different letters

were significantly different at

p \ 0.05
b Since the interactions

between S 9 L, L 9 D, and

S 9 D 9 L were not

significant, detailed

comparisons were omitted

Source of variation Significance

(p value)

Categories Meana Standard

error

Species (S) 0.000 Prosopis glandulosa -25.7 a 0.13

Condalia hookeri -27.8 b 0.11

Zanthoxylum fagara -27.4 b 0.08

Landscape location (L) 0.000 Upland -27.2 a 0.07

Drainage woodland -26.5 b 0.05

Playa -26.3 b 0.16

Date (D) 0.000 April -26.4 a 0.07

August -27.0 b 0.07

S 9 D 0.000 P. glandulosa April -24.9 a 0.13

August -26.2 b 0.13

C. hookerI April -27.5 a 0.13

August -27.8 a 0.13

Z. fagara April -27.2 a 0.11

August -27.2 a 0.11

S 9 Lb 0.368 – – – –

L 9 Db 0.316 – – – –

S 9 D 9 Lb 0.994 – – – –

484 Oecologia (2008) 156:479–489
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Discussion

Spatial variability

Many studies have documented strong negative correla-

tions between water availability and leaf d13C at ecosystem

to regional scales (Comstock and Ehleringer 1993; Stewart

et al. 1995; Anderson et al. 1996). Given the importance of

water in this semiarid subtropical savanna parkland land-

scape, we hypothesized that greater soil water availability

should favor greater stomatal conductance, leading to

higher pI/pa at the sites of carboxylation and more negative

leaf d13C. Surprisingly, our studies showed that the overall

mean leaf d13C values of all three woody species were

actually more negative in the uplands (-27.2%), where

near-surface (0–15 cm) soil moisture was less available

(Fig. 2c), than in drainage woodland (-26.5%) and playa

(-26.3%), where near-surface soil moisture was relatively

more available (Fig. 2c; Table 3). Regression analyses

revealed that leaf d13C was negatively correlated with

elevation and positively related to plant-available VWC for

all three woody plant species (Fig. 3; Table 2). This result

implies that these species may be relatively de-coupled

from near-surface soil moisture conditions or that some

other variables may be overriding or interacting with water

availability to influence the observed spatial pattern of

plant d13C values.

Why was the spatial pattern of plant d13C uncoupled

from the spatial pattern of soil moisture availability? First

of all, it should be emphasized that the assessment of soil

water in this study was based on a single point in time and,

as such, this assessment is clearly limited because leaf d13C

values integrate the isotopic composition of carbon

acquired over a much longer period of time. Second, our

assessment of soil water availability was confined to the

surface soil (0–15 cm). However, P. glandulosa, Z. fagara,

and C. hookeri all have functional roots capable of

acquiring water at soil depths of 1–3 m (Table 1) (Mid-

wood et al. 1998; Boutton et al. 1999; Zou et al. 2005).

Thus, the soil moisture gradient that we have documented

in the upper 15 cm of the profile (Fig. 2) may be of little or

no consequence to the carbon–water relations of these

deep-rooted species, which have the ability to exploit

deeper—and potentially more available and more reli-

able—sources of soil water. Hence, we hypothesize that the

structural and functional characteristics of the root systems

of these woody species may dampen stomatal response to

variations in surface soil moisture availability across the

landscape. Third, under semiarid conditions, plants have

multiple adaptations for coping with water limitation, such
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as high root–shoot ratios, leaf-shedding, and osmotic

adjustment. These mechanisms may dampen stomatal

response to variations in apparent soil moisture availability

across the landscape. The atmospheric demand of water, as

indicated by vapor pressure deficit (VPD) can also be an

important factor influencing leaf water potentials and sto-

matal regulation (Stewart et al. 1995, Cornwell et al. 2007).

We speculate that VPD across the landscape in our study

may be similar due to the same macroclimate and that these

species, which are well-adapted to water limitation and

capable of keeping leaf water potentials at non-dangerous

levels, may have little stomatal response to changes in soil

moisture availability.

The robust positive correlation between leaf Narea and

leaf d13C could account for the observed spatial pattern of

leaf d13C. Leaf Narea is highly correlated with photosyn-

thetic capacity (Field and Mooney 1986; Hikosaka et al.

1998; Wright et al. 2003; Santiago et al. 2004). Plants with

higher leaf Narea are likely to have lower pI/pa ratios due to

their rapid assimilation of CO2 during photosynthesis,

resulting in higher d13C values. In our study area, leaf Narea

increased as elevation decreased (Table 2), potentially

contributing to the increase of leaf d13C along the transect.

In a comparison of the linear regression lines of leaf Narea

versus leaf d13C in April and August, ANCOVA analysis

revealed no significant difference in the slopes for either

C. hookeri or Z. fagara. The fact that the effects of leaf

Narea on leaf d13C in August did not differ from that in

April after a period of drought indicates that seasonal water

availability had no effect on the positive relationship

between leaf Narea and leaf d13C. Therefore, we speculate

that the major factor contributing to the spatial variation of

leaf d13C may be photosynthetic capacity, as indicated by

leaf Narea, instead of soil moisture availability.

However, soil moisture could be influencing foliar d13C

indirectly by affecting N-availability along the topoedaphic

gradient. Water and nitrogen are often co-limiting in dry-

land ecosystems (Schimel et al. 1997; Hooper and Johnson

1999; Hamerlynck et al. 2004). Both soil water content and

soil total N increased with decreasing elevation along our

transect (Fig. 2), and both of these variables are strongly

correlated with rates of N mineralization across a broad

range of ecosystem types (Booth et al. 2005). Thus, water

may be influencing foliar d13C by regulating soil N avail-

ability and leaf nitrogen along this gradient.

Leaf d13C may also be influenced by leaf internal

resistance to CO2 diffusion, as indicated by SLA. Vitousek

et al. (1990) found that the leaf d13C of Metrosideros

polymorpha did not reflect pI/pa, but it was strongly cor-

related with leaf mass per unit area. These researchers

concluded that internal resistance to CO2 diffusion was the

main cause of the observed trend, and they speculated that

lower SLA (thicker leaves) imposed greater resistance to

CO2 diffusion; consequently, CO2 partial pressure at the

fixation site should be lower, and leaf d13C would be

negatively correlated with SLA. However, Cordell et al.

(1999) found that internal resistance could not entirely

explain the spatial variation of M. polymorpha leaf d13C

and that its impact was secondary to the influence of

photosynthetic capacity. In our study, there was no sig-

nificant relationship between leaf d13C and SLA (Fig. 3).

Thus, our results suggest that the effect of photosynthetic

capacity (as indicated by leaf Narea) likely minimized any

influence of SLA on leaf internal resistance to CO2

diffusion.

Interspecific variability

Interspecific variations of leaf d13C of C3 plants are usually

within the range of 2–5% (O’Leary 1981). We found that

leaf d13C of P. glandulosa was up to 3% higher than that of

C. hookeri and Z. fagara (Table 3; Fig. 2e–g). It seems

unlikely that this isotopic difference is attributable to dif-

ferences in environmental conditions during leaf

production since these three species share relatively similar

phenologies, with massive leaf production initiated in

March–April resulting in peak leaf abundance between

June–August (Nelson et al. 2002). However, interspecific

differences in d13C could be related to the fact that

P. glandulosa is a N2 fixer (Zitzer et al. 1996). Consistent

with the results of other studies on this site (e.g. Barnes and

Archer 1996; Nelson et al. 2002), leaf Narea of P. glan-

dulosa was higher than that of C. hookeri and Z. fagara,

possibly because P. glandulosa has access to both atmo-

spheric and soil sources of N while the other two species

are limited to the soil for their N source. The higher leaf

Narea in P. glandulosa provides this plant with the potential

for a higher photosynthetic capacity (Barnes and Archer

1999; Zou et al. 2005) and, therefore, higher leaf d13C.

This is consistent with the results of Schulze et al. (1998)

who found that N2-fixers had leaf d13C values 1.2–2.4%
higher than those of non-N2 fixing species.

Differences in plant height (Table 1) may also influence

interspecific variation in leaf d13C values. Understory

plants in forest ecosytems have been reported to have lower

leaf d13C values (Berry et al. 1997; Ometto et al. 2002).

Two explanations for this vertical variation are possible:

(1) reduction in light intensity, and/or (2) the fixation of

respired CO2, which has much lower d13C than tropo-

spheric CO2 (Pearcy and Pfitsch 1991; Lai et al. 2005). In

our study, the canopy of the overstory tree P. glandulosa is

generally fully illuminated, whereas the canopies of the

relatively shorter shrubs C. hookeri and Z. fagara typically

receive light that has been attenuated by the overstory

P. glandulosa canopy (Archer 1995, Barnes and Archer

1996). Thus, variations in light intensity and the isotopic
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composition of assimilated atmospheric CO2 may both

contribute to the higher leaf d13C in P. glandulosa.

Seasonal variability

Increases in leaf d13C during the growing season associated

with progressive seasonal drought have been widely

reported (Smedley et al. 1991; Ehleringer et al. 1992;

Baldocchi and Bowling 2003). Because d13C can provide a

relative index of instantaneous WUE and long-term tran-

spiration efficiencies (Farquhar et al. 1989), increases in

WUE after a period of drought should be accompanied by

increases in leaf d13C. Therefore, we hypothesized that leaf

d13C values would be higher in August than in April.

However, contrary to expectations, leaf d13C remained

constant across time for C. hookeri and Z. fagara and were

actually lower in August than in April for P. glandulosa

(Table 3). Studies from hanging gardens in southern Utah

found similar seasonal patterns (Flanagan et al. 1997), but

these observations were unexplained. One potential

mechanism for the decrease in leaf d13C in P. glandulosa

during the growing season is the accumulation of epicu-

ticular wax, which is known to occur from May through

July in P. glandulosa (Jacoby et al. 1990). Leaf wax of

P. glandulosa consists mostly of esters and alkanes

(Mayeux and Wilkinson 1990); n-alcohol, n-acid, and

n-alkane wax compounds are, on average, depleted in 13C

by approximately 6.0 ± 1% relative to total plant carbon

(Conte et al. 2003). Thus, the accumulation of 13C-depleted

leaf wax could account for the decreased leaf d13C in

August compared to April in P. glandulosa.

Conclusions

In this semi-arid subtropical savanna, leaf d13C values of

dominant C3 woody species were found to be negatively

correlated with elevation and near-surface soil moisture,

suggesting that surface soil water has little impact on the

carbon/water relations and leaf d13C values of these deeply

rooted woody species. Instead, leaf d13C values along this

topoedaphic gradient appeared to be most strongly influ-

enced by leaf Narea. Higher leaf d13C values at lower

elevations appeared to be the result of a larger carboxyla-

tion capacity resulting from higher leaf Narea. Interspecific

patterns of leaf d13C values also appeared to be most

strongly related to leaf Narea. We hypothesize that surface

soil water availability in this system influences landscape-

scale spatial patterns of leaf d13C primarily via its effects

on N-availability rather than its effects on stomatal

conductance.
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