

Graduate Interdisciplinary Program in **Arid Lands Resource Sciences**

Topo-edaphic Constraints on Woody Plant Cover Change in a Semi-Arid Grassland

Scott Jones^{1,2} and Steve Archer^{1,3}

¹University of Arizona, ²Arid Lands Resource Sciences, ³School of Natural Resources and the Environment Contact: scottajones@email.arizona.edu

Introduction

- The proliferation of woody plants in grassland has occurred globally over the past century.
- This vegetation change impacts ecosystem function and the provision of a variety of ecosystem services. ¹
- Drivers of the encroachment process are varied, complex and subject to constraints related to soils and topography, but are not fully understood.
- Accordingly, spatial-temporal dynamics of the encroachment process are difficult to predict.
- The 'carrying capacity' (maximum potential shrub cover) of topoedaphic units within a climate zone are not known.
- Knowledge of 'shrub carrying capacity' and rates, dynamics and patterns of the shrub encroachment process across topo-edaphically diverse landscapes could be used by managers to:
 - Identify areas most at-risk for vegetation change
 - Prioritize when and where to employ brush management to achieve desired conservation objectives. ²

Figure 1. Repeat photography (1937, 1951. 2018) showing velvet mesquite encroachment at the Santa Rita Experimental Site ~ 13 km from the LCNCA study site (SRER Repeat Photography Archive, Station 127).

Study Site

Las Cienegas National Conservation Area (LCNCA), Southern Arizona

- ~18,200 ha (~45,000 acres) of State and Federal (BLM) lands
- Supports five of rarest habitat types in the American Southwest
- Managed as "working landscapes"
- Active brush management program

Objectives

- Quantify rates/patterns of shrub cover change from 1936 to 2017 across LCNCA.
- Assess the rate and extent of shrub cover change on ecosites within the LCNCA.
- Analyze the influence of topoedaphic variables (elevation, slope inclination, soil texture, soil moisture and slope aspect) on the rates of shrub encroachment

References

- Ansley, R.J., Wu, X.B., Kamp, B.A. 2001. Observations: long term increases in mesquite canopy cover in North Texas savanna. Journal of Range Management 54: 171-176
- 3. Koenker, R., P. Ng, and S. Portnoy. 1994. Quantile smoothing splines. Biometrika 81:673–680. 4. Wu, X. B., and S. R. Archer (2005), Scale-dependent influence of topography-based hydrologic
- features on vegetation patterns in savanna landscapes, Landscape Ecol., 20, 733–742.
- 5. Naito AT, Cairns D. 2011. Relationships between arctic shrub dynamics and topographically-derived hydrologic characteristics. Environ Res Lett 6(4):045506.

Results

Shrub Cover Change (%) by Elevation (m) From 1936 to 2017 Figure 3: Shrub cover change (%) vs. elevation

Shrub Cover Change (%) by Slope (°) From 1936 to 2017 Fig. 5 LCNCA

Figure 5: Shrub cover change (%) vs slope inclination (°) on the LCNCA. Data points color coded by ecosites (see Fig. 2 key). Black line denotes 95th quantile regression line. Maximum shrub cover change decreased as slope inclination increased to 5°, then levelled out.

Figure 6: Box and whisker plots of shrub cover change (%) by slope aspect for the entire LCNCA. Center, bottom, and top of boxes denote the median, the 25th- and the 75th-percentile; diamonds the 95th percentile. Potential shrub cover change ranged from 10% (Southwest facing slopes) to 25% (East facing). Five of the six major ecosites followed this pattern; clayey swales exhibited no relationship between maximum shrub cover change and aspect (data not shown).

Methods

Classification of shrub cover change from 1936-2017:

- Aerial imagery (B&W) from 1936, 1975, and 2017 (1:24,000) were georeferenced and resampled to a common resolution of 1-m 2.
- Iterative self-organizing (ISO) unsupervised classification in ArcGIS was used to quantify shrub cover.
- Accuracy assessment was ≥ 80%.

Shrub cover change variation on ecosites

- Spatially explicit shrub cover change between 1936 and 2017 was assessed for 1-ha grid cells.
- Ecosite maps were obtained from the Natural Resource Conservation Service (NRCS).
- Mean and the 95th percentile of shrub cover change was calculated for each ecosite and for the entire LCNCA.
- Cells in riparian corridors and on sites receiving past brush management were excluded from change analysis.
- Mean and the 95th percentile of shrub cover change was calculated for each ecosite and for the entire LCNCA.

Figure 7. Shrub cover (%) on the ~18,200 ha (45,000 acre) LCNCA site.

Shrub over change variation by topoedaphic variables

- Cell-specific variables quantified included: elevation, slope inclination, slope aspect, surface clay content, and a topographic wetness index (proxy for soil moisture).
- Upper (95th percentile) boundaries for cover or cover change across the LCNCA and on the six largest ecosites were defined using additive, nonparametric quantile regression.³ These boundaries are taken to represent the maximum potential shrub cover and shrub cover change.

Discussion/Next Steps

Discussion:

- LCNCA has undergone shrub encroachment but rates varied substantially by ecosite.
- Topoedaphic variables influencing cover change potential varied by ecosite.
- Contrary to expectations ^{4,5}, the topographic wetness index did not appear to influence shrub cover change potential (data not shown).

Next Steps:

- Account for interactions between topoedaphic variables (e.g. slope inclination x aspect)
- Expand analyses on clay content effects to include greater depths.
- Assess effects of 'depth to restrictive barriers" (e.g. caliche, bedrock, argillic horizons)
- Quantify rate and extent of shrub re-establishment on ecosites receiving brush management.

Acknowledgements

This project was supported, in part, by the Western Sustainable Agriculture Research and Education (SARE) (GW17-024) and USDA-NIFA Agroecosystems (2015-67019-23314) programs. We thank Kyle Hartfield for guidance with GIS and spatial analysis, and Austin Rutherford and Katie Predick for assistance with statistical analysis.