

BACKGROUND

Artificial Intelligence (AI) & Teamwork:

- Al allows for computer systems to learn and make recommendations on complex knowledge bases unlike humans
- facilitates improvement in workplace teams
- Benefits:
- User-friendly
- Appeal to younger generation
- Targets specific areas that need improvement
- Tailors specific interventions for teams
- Creates teams with complementary skillsets (3)

Collaboration Literature

- Using EEG and fNIRS, (1) found that **c**ooperation conditions had significantly greater brain synchronization between partners when compared to competition
- Using eye-tracking, (2) found a significant correlation between percentage convergence of visual focus and achievement score (= success in game)
- Significant correlation between **convergence of visual focus** and quality of collaboration

Goals of the ToMCAT Project

• Build artificially intelligent agents that understand social and goal-oriented aspects of teams in mission-like scenarios (e.g., search-and-rescue missions), and can reason about possible interventions to **steer** the team

Agent: ToMCAT

• Needs to model human players' affect and beliefs about the situation and about each other's affect and beliefs (theory of mind)

Extensive measurements of humans interacting in small teams

• Audio, video, eye tracking, electrocardiography (EKG), electroencephalography (EEG), functional near-infrared spectroscopy (fNIRS), and self report

Task:

• Participants execute **missions** within a Minecraft environment with three human players interacting with the ToMCAT agent

THE UNIVERSITY OF ARIZONA **COLLEGE OF AGRICULTURE & LIFE SCIENCES** Norton School of Family & Consumer Sciences

Theory of Mind-based Cognitive Architecture for Teams (ToMCAT): Protocol and Implications

Manasa Veerapaneni, Sam Rodriguez, Daria Letson, Valeria Pfeifer, Savannah Boyd, & Emily Butler

Figure 2

Figure 3

Figure 4

Figure 1. Schematic of the participant data collection environment.

Electroencephalogram (EEG) Records electrical activity of brain via electrodes that detect tiny changes in electrical charge resulting from neuronal activity (Fig 2).

Functional Near-Infrared Spectroscopy (fNIRS)

Measures hemodynamic response, or blood oxygenation levels, via nearinfrared light with **optodes** (See Fig 3; Red= Sources, Blue= Detectors).

Electrocardiogram (ECG or EKG)

• Measures electrical heart activity (Fig. 4)

Galvanic Skin Response (GSR) • Measures sweat gland activity (Fig. 5)

Figure 6

Eye-tracking

- "Eyes to the mind"
- tracks eye movements
- gaze location, duration
- pupil diameter (Fig. 6)

1. Finger tapping

- \circ individual
- team
- **2. Picture Rating Task**
- \circ individual
- team

3. Ping Pong

- player vs player
- \circ team vs Al

MINECRAFT MISSION (2x)

Search and rescue scenario:

- Goal: find victims and save them
- different victim types critical
- regular (A & B)
- 3 different **player roles**:
 - Medic
- Engineer
- Transporter/ Stretcher
- time limit: 15 min
- 2 min planning session

Cooperation

- between
- participants
- Mirrors real life situations

With the construction of AI through ToMCAT we can expect a reduction in cost, time, and number of casualties in search and rescue missions

REFERENCES

- *Horizons, 62*(6), 741–750. https://doi.org/10.1016/j.bushor.2019.07.007
- Youth, and Families.

BASELINE TASKS

IMPLICATIONS

Improve communication between rescue teams and headquarters reduce time and cost spent on search and rescue missions • reduce **number of casualties** both of rescue team and victims

(1) OthlinghaBalconi, M., & Vanutelli, M. E. (2017). Cooperation and competition with Hyperscanning Methods: Review and future application to emotion domain. *Frontiers in Computational Neuroscience*, 11. https://doi.org/10.3389/fncom.2017.00086 (2) us-Wulhorst, J., Jedich, A., Hoppe, H. U., & Harrer, A. (2018). Using eye-tracking to analyze collaboration in a virtual role play environment. *Lecture Notes in Computer Science*, 185–197. <u>https://doi.org/10.1007/978-3-319-99504-5_15</u> (3) Webber, S. S., Detjen, J., MacLean, T. L., & Thomas, D. (2019). Team challenges: Is artificial intelligence the solution? *Business*

The authors acknowledge funding from the Department of Defense and the Frances McClelland Institute for Children,