Editorial—The Moral Element in the March of Science, Technology and Agriculture 34

Freshwater Islands in a Desert Sand Sea: The Hydrology, Flora, and Phytogeography of the Gran Desierto Oases of Northwestern Mexico 35
E. Ezcurra, R. S. Felger, A. D. Russell, and M. Equihua

Sesbania-Rhizobium Specificity and Nitrogen Fixation 45
H. M. Abdel Magid, P. W. Singleton, and J. W. Tavares

Piman Indian Historic Agave Cultivation 49
H. F. Dobyns

Nitrogen Fixation in Desert Legumes 64
F. S. Crosswhite and C. D. Crosswhite

Cattail (Typha domingensis) at La Salina in the Gran Desierto of northwestern Sonora. Photo by Miguel Equihua. See article on page 3.
Freshwater Islands in a Desert Sand Sea: the Hydrology, Flora, and Phytogeography of the Gran Desierto Oases of Northwestern Mexico

Exequiel Ezcurra
Centro de Ecología
Universidad Nacional Autónoma de México
04510 Mexico City, México

Richard S. Felger
Office of Arid Lands Studies,
University of Arizona, Tucson 85719

Ann D. Russell
School of Oceanography
University of Washington, Seattle 98195

Miguel Equihua
Instituto de Ecología
Apartado Postal 18-845
11800 Mexico City, México

Abstract
The Adair Bay pozos (water holes) are small artesian springs scattered along the saltflats of the Gran Desierto near the coast of the Gulf of California in northwestern Sonora. The pozos provide essential fresh water for the rich bird fauna and some of the mammals, and were also utilized earlier by native people.

The Gran Desierto aquifer appears to consist of sand and gravel deposited in ancient river beds which were subsequently overlain by dunes. Toward the coast, the alluvial aquifer becomes confined, or buried, beneath the relatively impermeable clays of the saltflats. These clays act as a barrier which causes artesian pressure to develop within the underlying aquifer. Pozos appear to develop at locations in which the permeability of the clay is increased, possibly by desiccation cracking or by flocculation due to ion exchange. The hypothesized existence of a buried fluvial system may explain the occurrence of clusters of pozos in some saltflats and their absence in many others, i.e., pozos only occur in saltflats with an underlying waterway.

Alkali Weed (*Nitrophila occidentalis*) is the first plant to colonize places where the aquifer has broken through the overlying clays and reaches the surface or near the surface. This plant is a good indicator of fresh water. Coyotes seek fresh water in these places. Such action of coyotes and perhaps other animals seems to be related to the formation of smaller pozos. Saltgrass (*Distichlis spicata*) is the second plant to colonize a pozo and larger oases are colonized by a more diverse flora.

The flora of the pozos is markedly different from that of the rest of the Sonoran Desert, both in life-form spectrum and geographic origin. The pozos support 26 species of vascular plants, many of which show temperate affinities. Several members of this flora are new geographic records: Indian Hemp (*Apocynum cannabinum* in the Apocynaceae), new for Sonora and the Sonoran Desert; *Lythrum californicum* in the Lythraceae, new for Sonora; Greasewood (*Sarcobatus vermiculatus* in the Chenopodiaceae), a new generic record for Mexico.

The pozos are island-like relics of the delta of the Colorado River. With the delta ecosystem now virtually destroyed, the local extinction of any wetland species in the pozo flora will most probably not be followed by new immigrants of the same flora, but by introduced weed species such as Salt Cedar (*Tamarix ramosissima*).

The species-area relationship of the pozo flora is similar in value to that for other island ecosystems, although the exponential parameter \(z = 0.263\) is significantly higher than Preston's "canonical" value and the scale coefficient is significantly higher \(k = 0.75\) than those for other small island ecosystems. The species richness of a pozo is nearly four times higher than that of dry terrestrial islands of comparable size. Based on a projection of a biogeographical model fitted to the floristic richness of the pozos, we estimate that the original flora of the Colorado River delta supported 200 to 400 species of wetland vascular plants. Most of these populations have met local extinction with the destruction of the delta ecosystem of the Colorado River earlier in this century.

Acknowledgements

The first author (E.E.) acknowledges the academic stimulus of E.H. Rapoport who initiated him into modern biogeography. This project was supported by the Instituto de Ecología, México, the Consejo Nacional de Ciencia y Tecnología (CONACYT), México, the Regional Program for Scientific Development of the Organization of American States, and William Gregg, Man and Biosphere (MAB) Program of UNESCO, we are grateful for the assistance. We thank Thomas G. Bowen and Jorge Lopez-Portillo for generous assistance in the field. We especially thank Thomas Bowen for contributing information on the archaeology. We thank Rebecca K. Van Devender and Charles T. Mason, Jr. of the University of Arizona herbarium and Fernando Chiang and other staff at the Herbario Nacional of the Instituto de Biología, UNAM, for generous assistance in our herbarium work.
Figure 1. La Soda. Alkali Weed, Nitrophila occidentalis, surrounding a small, young pozo. Photo by Ann Russell, January 1984.

Figure 2. La Salina. Exterior of one of the larger pozos. The shrubs are Screwbean, Desert-broom, and Salt Cedar. Bulrush (Juncus acutus), Coast Saltbush (Atriplex barclayana), and Rabbitfoot Grass (Polypogon monspeliensis). Photo by R. S. Felger, December 1986.

Figure 3. Alkali Weed, Nitrophila occidentalis. La Salina. Photo by Miguel Equihua, June 1982.

Figure 4. La Salina. Interior of one of the larger pozos. Background with Screwbean (Prosopis pubescens), Salt Cedar (Tamarix ramosissima), Reedgrass (Phragmites australis), and Desert-broom (Baccharis sergiloides) with ripe fruit. Wild Hemp (Apocynum cannabinum) in middle. Hierba de Manso (Anemopsis californica) and Saltgrass (Distichlis spicata) in foreground. Photo by R. S. Felger, December 1986.
Introduction

The Gran Desierto of northwestern Sonora is one of the driest areas of the Sonoran Desert. Seemingly out of place are spring-like fresh water sources at various points in the saltflats at Adair Bay in the southern part of the Gran Desierto, approximately 80 km ESE of the delta of the Colorado River [Figures 5 and 6]. These small oases occur in the midst of highly saline flats, in areas where salt crusts may be caked several centimeters thick and no vegetation grows. Known locally as “pozos,” the Spanish term for “hole” or “well,” these island-type formations support a vegetation entirely different from that of the desert surrounding the saltflats.

In this region where places with potable water are few and far apart, the pozos were especially important to the indigenous people well back into prehistoric times. The dunes that surround the pozos are frequently littered with modest quantities of shells and artifacts, including prehistoric pottery fragments, flakes from stone tool manufacture, and manos and metates. The water from these pozos no doubt made possible the intensive exploitation of the littoral, seen in the much larger “concheros” (shell-midden dune sites) that flank several of the beaches and esteros of the region. These sites, seldom more than a few kilometers from a pozo, are as much as 2 km in extent and contain shells probably numbering in the millions, the product of countless meals over great spans of time. The pottery at these sites, mostly Patayan types brought in from the Colorado River area, indicate that native people have been exploiting resources on a continuous basis since at least A.D. 700. The few chronologically sensitive stone artifacts show that humans were in the area as early as the first millennium B.C., and there are indications that sporadic use of the region may go back thousands of years before that.

In historic times the pozos were used by western Tohono O’odham [Papago] during annual, sacred pilgrimages to the sea to gather salt [e.g., Lumholtz, 1912]. There were well-known trails leading to the pozos. On March 21, 1701, local Indians guided Padre Eusebio Kino, Captain Juan Mateo Manje and their companions to one of the Adair Bay pozos. Manje wrote in his journal that “llegamos a 3 ojitos de agua que yntitlan Cubo Cuasibadia” [Burrus, 1971:503]. Ives [1971] labelled it as Tres Ojitos on his map and it seems to be the same place as the water hole also known to us as Tres Ojitos.

The explorers were seeking an overland route to Baja California and were hoping to reach the Colorado River by crossing the desert along the coast. However, Manje [Burrus, 1971:270] recorded that their “plan could not be put into effect because the three small water holes which on the previous day [March 21] seemed to contain water

Figure 5. The Gran Desierto of northwestern Sonora and adjacent regions.
in abundance gave out when the horses drank from them and did not refill during the entire night. This lack of water forced us to send one of our group to investigate another water hole, called Tucaboricabavia, ten miles away; he reported on his return that it had very little water." Did their companion find Tucaboricabavia, or did he find another, much smaller pozos? Is Tucaboricabavia the same place as La Salina? Certainly there was sufficient water at La Salina. [We presume that La Salina, which one hundred years ago looked much like it does today, was similar when Kino was in the region about two centuries before Lumboltz. The smaller pozos undoubtedly have changed considerably in the intervening centuries.] But the horses also needed forage and water holes were far apart. It is no place for horses. Lumboltz (1912:268) found out that his guide was correct when he said that "the horse that enters the médanos [dunes] never comes back."

The pozos provide essential water for the rich bird fauna and for some large mammals such as the coyote and kit fox. These water holes are in the center of vegetated mounds that are formed by accumulation of undecomposed roots and blown sand. In some instances these hummocks can reach heights of 1.5 m. The highest hummocks occur at La Salina (Figure 2) and show an organic matter content ranging from 36% to 45%. This value contrasts with the normal carbon content in saltflats which ranges from less than 0.1% to 0.5%. The peaty mounds of the pozos provide an interesting substrate for future palynological and carbon-dating studies.

The water holes in the center of the mounds of the smaller pozos are dug and maintained by coyotes searching for water (Lumboltz, 1912, May, 1973). May (1973) noted that new pozos can originate in a relatively short time. Indeed, particularly after a rainy season, a partial dissolution of the salt crust can often be seen in distinct patches along the saltflats. Most of these wet patches occur in small hillocks where Alkali Weed (Nitrophila occidentalis) grows, and some of them are dug by coyotes in search of fresh water. In many cases fresh water upwells from the freshly-dug hole, which is then maintained by the drinking and digging activities of birds and mammals (see Lumboltz, 1912, May, 1973).

The research described in this paper was directed towards (a) analyzing the dynamics of the water system that feeds these sites, (b) describing the biogeographical origin of the freshwater flora, and (c) relating the species-richness of these sites to existing biogeographical models. To fulfill these goals we studied the hydrology of the Gran Desierto and the vegetation of the pozos, including
distinctions and biogeographical affinities of its plants.

Lumholtz [1912] described and photographed several large springs very near the coast [his Salina Grande is La Salina] and stated that potable groundwater could be obtained near the coast by digging through a shallow layer of highly saline clay. Larry May [1973] discussed the pozos at length, speculating that the saltier ones may occur at the interface between fresh continental groundwater and seawater. Ives [1964] referred briefly to poisonous springs in the dunes west of the Pinacate volcanoes in a warning to would-be travellers of the unreliability of water sources in the area.

The Pinacate volcanic complex or shield is composed of many peaks and calderas of basalt, tuff, and ash, flanked by extensive basalt flows [Ives, 1964; Lynch, 1981]. Huge dune fields, banked up against the western edge of the volcanic complex, extend nearly to Adair Bay. Because of the relatively low permeability of the volcanic shield and because the land surface slopes toward the bay [and the groundwater surface often gently parallels the land surface], it is likely that runoff from the lava fields provides recharge to an aquifer underlying the dunes.

Hydrogeology and Water Chemistry

Our objectives in the hydrologic portion of the study were to ascertain the source of the water discharging from the pozos, and to explain the dynamics of the hydrologic system supporting them. To our knowledge the hydrogeology of the region between the Pinacate volcanic field and Adair Bay has not previously been seriously studied.

Between June, 1982 and January, 1983 three field trips were made to collect water samples and samples of clay and salt crust from the mudflats surrounding the pozos, as well as other hydrologic data. A fourth trip was made in January, 1984 to drill test holes and collect samples of aquifer materials for permeability testing. Water samples were collected between June, 1982 and January, 1983 from [a] pozos, [b] shallow holes dug in the saltflats, and [c] hand-dug ranch wells located in different parts of the Gran Desierto. The number of samples was limited by the accessibility of pozos and wells and by our limited knowledge of the area. Some of the pozos described by May [1973] were not found in the reported location, while others were extremely difficult to reach because of flooding of the coastal saltflats.

Pozo samples were usually taken in the early morning when evaporation was low and the flows were at a maximum. Groundwater samples in the saltflats were obtained by digging the highly clayey substrate until water-saturated soil was found. The hole was left to fill overnight and the samples were taken the next morning. Samples from wells were collected by bailing. The depth to water was also measured at the wells. The locations of the sampling sites are shown in Figure 2 and origin and collection dates are summarized in Table 1. The samples were analyzed for eleven physico-chemical parameters, including major cations and anions [calcium, magnesium, sodium, potassium, sulfate, bicarbonate, carbonate, chloride, and nitrate], pH, and electrical conductivity. The results of the analyses are given in Table 2.

The resulting data matrix was subjected to a multivariate analysis of variance [MANOVA], in which the

Table 1. Origin and Collection Dates of Water Samples

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Date of Collection</th>
<th>Location Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Salina 2</td>
<td>28 June 82</td>
<td>Sample taken from water-saturated soil in 0.2 m deep hole bored in bottom of saltflat.</td>
</tr>
<tr>
<td>La Salina 3</td>
<td>28 June 82</td>
<td>Sample from hole bored in sample 1, fifty meters away from vegetated patch of a large pozo.</td>
</tr>
<tr>
<td>Pozo Zopilote 2</td>
<td>29 June 82</td>
<td>Sample drawn directly from water hole.</td>
</tr>
<tr>
<td>La Salina 4</td>
<td>28 June 82</td>
<td>Sample bored as in sample 1, one meter away from vegetated patch of a large pozo.</td>
</tr>
<tr>
<td>La Salina 5</td>
<td>28 June 82</td>
<td>Sample from hole dug in side of 1.5 m pear mound, from root zone of Typha domingensis.</td>
</tr>
<tr>
<td>Tres Ojitos 1</td>
<td>15 Jan 83</td>
<td>Water hole 1.</td>
</tr>
<tr>
<td>La Salina 6</td>
<td>28 June 82</td>
<td>Sample from water hole in the center of 1.5 m pear mound (same mound as sample 5).</td>
</tr>
<tr>
<td>Abandoned well 1</td>
<td>8 Nov 82</td>
<td>12 km SW of Sierra Blanca, elevation 20 m, water table 8 m below surface.</td>
</tr>
<tr>
<td>La Salina 7</td>
<td>28 June 82</td>
<td>Hole bored as in sample 1, at edge of vegetated patch beneath root zone of Distichlis spicata.</td>
</tr>
<tr>
<td>Abandoned well 2</td>
<td>8 Nov 82</td>
<td>15 km NW of Gustavo Sotelo, elevation 28 m, water table 6 m below surface.</td>
</tr>
<tr>
<td>Well 1</td>
<td>6 Nov 82</td>
<td>Rancho Salto, 5 km S of Sierra Extranja, near western edge of Pinacate volcanic shield, elevation 80 m, water table 5 m below surface.</td>
</tr>
<tr>
<td>Sulfate adjacent to Pozo Zopilote</td>
<td>9 Nov 82</td>
<td>From a 0.6 m deep hole dug at the bottom of the saltflat.</td>
</tr>
<tr>
<td>Pozo Muerto at La Soda</td>
<td>15 Jan 83</td>
<td>Sample drawn directly from water hole, water flow in this pozo has apparently slowed down and the water hole is silanized.</td>
</tr>
<tr>
<td>Abandoned well 3</td>
<td>8 Nov 82</td>
<td>8 km N of Gustavo Sotelo, elevation 28 m, water table 6 m below surface.</td>
</tr>
<tr>
<td>Pozo Metate at La Soda</td>
<td>14 Jan 83</td>
<td>Sample drawn directly from water hole.</td>
</tr>
<tr>
<td>Well at Gustavo Sotelo</td>
<td>8 Nov 82</td>
<td>25 m, water table 5 m below surface.</td>
</tr>
<tr>
<td>Tres Ojitos 2</td>
<td>15 Jan 83</td>
<td>Water hole 2.</td>
</tr>
</tbody>
</table>
concentration and negatively correlated with potassium concentration. Sample 8, which had a relatively high concentration of calcium and magnesium, was differentiated from the rest of the cluster along this axis. It is interesting to note that this sample came from a well south of the Sierra Blanca, a pre-Tertiary gneiss and granite formation. Water flowing from this formation would be expected to differ chemically from that flowing from the basaltic volcanic field; however, water level and lithologic data in the area are too scant to verify that this well is located in a different groundwater basin than the others.

The statistical analysis of the absolute ionic concentrations showed that water from wells is chemically similar to water from pozos, and that these waters in turn are different from the saline water of the saltflats. However, absolute concentrations may not indicate the source of the water, because evaporation can increase absolute ionic concentrations in water from a single source. In other words, the analysis based on absolute concentrations does not determine whether the salinity of water from the saltflats is due to evaporation of continental groundwater or to seawater intrusion. One way to distinguish between possible sources of water is to compare the relative percent of total cations or anions represented by a particular ion, a parameter which does not change substantially with evaporation. MANOVA and Principal Components Analysis were performed on relative concentrations of the major cations and anions. The MANOVA did not show significant differences between pozo, well, and saltflat waters \(P = 0.15 \) for Pillai’s F-test and \(P = 0.20 \) for Wilks’ approximation; however, because the relative concentrations of some ions are highly intercorrelated, the Principal Components Analysis was able to detect differences \((Figure 7) \). Axis 1, explaining 55% of the variability in the cluster, had high positive loadings for sodium and high negative loadings for calcium, potassium, and bicarbonate. The saline and transitional samples \((samples 1, 2, 4, 9, 12, and 13) \) occupied the more sodic extreme of this gradient. A Mann-Whitney U-test showed that their loadings were significantly higher \((P < 0.01) \) than those of pozo and well samples pooled together. Axis 2, explaining 16% of the dispersion, had high loadings for chloride. With the exception of sample 8, which was an outlier in the absolute-concentration analyses as well, all pozo samples had a significantly higher proportion of chloride than well samples \((P < 0.05) \), but the two subsets did not differ significantly along the first axis. The higher proportion of chloride in pozo water may be due to mixing with the salty clays of the saltflats.

The position of the average concentration of seawater \((Horne 1969) \) in Figure 7 shows that the relative ion content in samples from the extensive mudflats of Adair Bay is more similar to that of fresh groundwater than to that of marine waters. This suggests that the origin of the water in both the potable and saline pozos and the mudflats is the continental freshwater aquifer, and that the salts are concentrated in the mudflats mostly by a process of long-term migration of ions and subsequent evaporation. These data do not support May’s \((1973) \) hypothesis that saline waters of the pozos derive their salts directly from seawater intrusion.

Surface salt crystals, collected at La Soda playa and analyzed by x-ray diffraction, were a mixture of halite or common salt \((NaCl) \), and trona \((NaHCO₃·NaHCO₃·2H₂O) \), a biphased form of sodium carbonate. Trona is more abundant on the higher parts of the saltflats, forming powdery and rounded “popcorn” clusters of crystals. Halite, a more soluble salt, was present in higher proportion at the bottom of the flat. The absence of sulfate salts on these flats supports the hypothesis that the origin of the salts is not marine.

Piezometric Studies. The results of the water chemistry survey suggest that the fresh water emerging at the pozos comes from a large aquifer underlying the Gran Desierto. In order to confirm this hypothesis and to analyze the characteristics of the aquifer, a detailed drilling study in two sites within a single saltflat was carried out.

Pozo Muerto and Pozo Metate occur at La Soda in the same saltflat along with a third \((unnamed) \) pozo and sev-

Table 2. Water Samples From the Gran Desierto

<table>
<thead>
<tr>
<th>Sample</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17 Seawater</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>—</td>
<td>—</td>
<td>0.5</td>
<td>1.9</td>
<td>0.4</td>
<td>0.7</td>
<td>3.4</td>
<td>0.7</td>
<td>0.4</td>
<td>0.7</td>
<td>0.4</td>
<td>0.7</td>
<td>0.4</td>
<td>0.7</td>
<td>0.4</td>
<td>0.7</td>
<td>0.4</td>
</tr>
<tr>
<td>Magnesium</td>
<td>0.6</td>
<td>0.7</td>
<td>2.5</td>
<td>1.0</td>
<td>1.1</td>
<td>0.4</td>
<td>2.2</td>
<td>6.2</td>
<td>0.8</td>
<td>0.5</td>
<td>0.4</td>
<td>1.1</td>
<td>0.3</td>
<td>0.6</td>
<td>0.7</td>
<td>0.5</td>
<td>1.2</td>
</tr>
<tr>
<td>Sodium</td>
<td>2336.6</td>
<td>4034.0</td>
<td>56.9</td>
<td>924.8</td>
<td>37.0</td>
<td>51.4</td>
<td>36.5</td>
<td>38.4</td>
<td>891.2</td>
<td>81.3</td>
<td>4.2</td>
<td>6154.8</td>
<td>476.3</td>
<td>49.7</td>
<td>42.4</td>
<td>47.9</td>
<td>58.4</td>
</tr>
<tr>
<td>Potassium</td>
<td>19.3</td>
<td>15.7</td>
<td>0.2</td>
<td>5.9</td>
<td>0.6</td>
<td>0.4</td>
<td>0.7</td>
<td>0.4</td>
<td>4.8</td>
<td>0.3</td>
<td>0.2</td>
<td>0.9</td>
<td>1.0</td>
<td>0.3</td>
<td>0.6</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Sulphate</td>
<td>760.7</td>
<td>1304.1</td>
<td>204.3</td>
<td>8.9</td>
<td>10.0</td>
<td>10.0</td>
<td>234.7</td>
<td>14.3</td>
<td>0.4</td>
<td>3347.2</td>
<td>200.0</td>
<td>12.6</td>
<td>10.0</td>
<td>12.2</td>
<td>13.0</td>
<td>14.1</td>
<td></td>
</tr>
<tr>
<td>Bicarbonate</td>
<td>—</td>
<td>—</td>
<td>17.9</td>
<td>5.7</td>
<td>9.3</td>
<td>4.8</td>
<td>4.8</td>
<td>36.8</td>
<td>11.7</td>
<td>4.2</td>
<td>9.0</td>
<td>9.2</td>
<td>8.2</td>
<td>11.8</td>
<td>11.6</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>Carbonate</td>
<td>116.0</td>
<td>72.0</td>
<td>19.0</td>
<td>6.8</td>
<td>2.0</td>
<td>0</td>
<td>28.2</td>
<td>12.0</td>
<td>800.0</td>
<td>96.0</td>
<td>6.8</td>
<td>1.8</td>
<td>3.8</td>
<td>2.8</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Chloride</td>
<td>1350.0</td>
<td>2440.0</td>
<td>19.0</td>
<td>704.0</td>
<td>25.1</td>
<td>30.0</td>
<td>24.0</td>
<td>23.0</td>
<td>550.0</td>
<td>40.0</td>
<td>0.5</td>
<td>1220.0</td>
<td>120.0</td>
<td>20.5</td>
<td>22.5</td>
<td>18.5</td>
<td>31.0</td>
</tr>
<tr>
<td>Nitrate</td>
<td>0.2</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
<td>1.0</td>
<td>1.1</td>
<td>0.6</td>
<td>1.4</td>
<td>0.14</td>
<td>0.14</td>
<td>0.4</td>
<td>8.0</td>
<td>0.14</td>
<td>1.6</td>
<td>3.5</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>

Table notes:

| Charge balance error (%) | 2.8 | 3.0 | 1.2 | 0.0 | 1.0 | 1.2 | 2.1 | 1.1 | 2.7 | 1.9 | 1.8 | 6.8 | 2.4 | 0.5 | 0.2 | 0.6 | 2.0 | 4.8 |
| pH | 9.8 | 9.7 | 8.8 | 9.1 | 8.7 | 9.0 | 8.6 | 8.6 | 8.2 | 9.2 | 8.5 | 10.0 | 9.8 | 8.2 | 9.1 | 9.2 | 10.1 | 8.0 |

| Conductivity | 233.0 | 402.7 | 5.8 | 99.0 | 41.1 | 5.4 | 41.1 | 48.5 | 7.3 | 0.6 | 582.5 | 43.1 | 4.7 | 4.4 | 4.8 | 6.1 | 47.9 |

1 **Anions and cations are measured in meq/L, conductivity is measured in mS/cm (S = Siemens = ohm⁻¹ cm⁻¹).** The sources of the samples are shown classified into four categories: (a) saline (water samples from saltflats), (b) pozos (water samples from freshwater cases), (c) transitional areas (briny water samples from the edge of a pozo or from closed pozos which do not outcrop at present), and (d) wells [samples taken from the underground aquifer of the desert through existing wells]. The average composition of seawater was extrapolated from Horne \((1969) \). The charge balance error, which provides an indication of the quality of the analysis, was calculated by sum cations - sum anions. sum cations and anions. A charge balance error of 5% or less is considered acceptable, although higher errors may be expected from very saline water samples.
eral smaller mounds with *Nitrophila*. Pozo Muerto, an inactive and salinized water hole, is located about 60 m from the western edge of the saltflat, near sand dunes that are littered from shell fragments, painted and bare pottery remains, mortar-stones and pestles, bones, stone flakes and other archaeological remains. A hummock of dead and living Saltgrass (*Distichlis spicata*) and *Nitrophila occidentalis*, approximately one meter high, surrounds an inner pool, which opens out into a small pond about 1.5 m across. The water at Pozo Muerto is brackish and usually stained red-brown. Pozo Metate is located across the saltflat, east of Pozo Muerto. The water is clear and potable, and spills constantly into the surrounding saltflat. This water hole is surrounded by a ring of Flat Sedge (*Cyperus laevigatus*) with a wide outer ring of *Nitrophila occidentalis*. The saltflat clay is covered with a crust of hard and crackly salt crystals (mostly halite) in the lower parts, and powdery crystals forming rounded clusters (mostly trona, with a typical “popcorn” texture) in the higher places.

Two piezometers were installed near each pozo to measure the water pressure and to enable water to be sampled at different depths. A hand-driver bucket auger 9 cm in diameter was used to drill the holes. At each site, one piezometer was installed at a depth of approximately 1.2 m, in contact with the saline aquifer of the saltflat. The boring for the second piezometer was continued until an underlying freshwater aquifer was found. At both sites, fresh water was encountered in a matrix of sand and rounded gravel at a depth of approximately 3.0 m. Owing to the strong artesian pressure of the aquifer, water flowed freely from the deeper-drilled hole. The piezometers were made from 5 cm PVC pipe, with a 46 cm screened section made by drilling rows of 0.6 holes and wrapping the pipe with 1 mm nylon mesh. Dune sand was poured into the annulus between the boring and the pipe to about 60 cm above the top of the screened section. The piezometer was then sealed off by pouring concrete into the annulus, and clay was packed into the top to prevent leakage of surface water into the boring.

Once installed, the piezometers were bailed twice to clean the fine materials away from the screen. After 15 days, the head differences between the shallow and the deep piezometers were measured, and water samples were taken from each piezometer for major cation and anion analysis. Salt crusts were collected for mineralogical analysis. An additional water sample was taken beneath a *Nitrophila* patch, at a depth of about 20 cm below the soil surface.

Water in the two deep piezometers was chemically similar to that of the pozos and the Gran Desierto aquifer, with conductivities of 3.5 and 3.3 mS (around 0.3% of total dissolved solids). Water saturating the soil beneath the *Nitrophila* patch was also non-saline and similar to that of the deep piezometers, with a conductivity of 2.3 mS (ca. 0.2% TDS). On the other hand, the two shallow piezometers contained the typical hypersaline water of the saltflat, showing conductivities above 100 mS (more than 8% TDS).

The vertical hydraulic gradient (with heads corrected to a standard density of 1 g/cm³) was 0.43 m/m at Pozo

Figure 7. Principal components analysis of the eleven samples characterized by their relative ion content. ○ = saline and transitional samples; □ = pozo samples; △ = well samples; ★ = standard seawater (Abscissa: axis 1; ordinate: axis 2)

Figure 8. Piezometric diagram.
Muerto and 0.36 m/m at Pozo Metate [Figure 8] indicating that a strong driving force for upward vertical flow exists at both sites [hydrological pressures were measured as the height of a water column, a standard unit in hydrology: one meter of water pressure is equivalent to 98 mbars, a unit more familiar to biologists]. At both sites the deep piezometers became flowing wells, i.e., the water level inside the piezometer was higher than the land surface.

Samples of clay from the bottom of the playa at La Soda and of sand from the freshwater aquifer were collected and tested for permeability. Under a pressure gradient of 1 m/m (approx. 1 mb/cm) the permeability (or hydraulic conductivity) of the clay was 0.001 cm/hr and that of the sand was 243 cm/hr. In the time that water takes to move 1 mm in the clay, it will move 2.4 km in the sand. Clays sampled during an earlier field trip were found to be highly expansible, with mean differences of 42% in volume between wet and dry clay.

Conclusion. The information presented here indicates that a confined aquifer with a strong upward component of flow near the coast is the source of water discharging in the pozos. The aquifer probably receives recharge from the Pinacate volcanic shield and becomes confined toward the coastal area. The relatively impermeable clays of the saltflats. The permeability of the clay may increase in some places initially because of cracking caused by desiccation and contraction, allowing the flow of fresh water from the confined aquifer. As the fresh water flows through the clay, the permeability may further increase because of flocculation due to replacement of sodium by calcium at exchange sites. Finally, root activity of plants may also increase the clay permeability and help to maintain spring flows.

The geologic origin of the Adair Bay saltflats is not well known. Some authors [May, 1973; J. Hayden, pers. comm.] think that the Adair Bay saltflats might be a palo-deltaic formation. If this hypothesis is correct, the clayflats would have originated from old estuarine sediments. The sand and the rounded gravel [of apparent fluvial origin] that underlie the clay barrier indicate the existence of former fluvial activity in the area. We hypothesize that the deep sandy aquifer underlying the pozos consists of old waterways now buried under the moving dunes. If correct, this buried fluvial system would account for the occurrence of clusters of pozos in some saltflats and no pozos in many others, i.e., pozos occur only in saltflats with an underlying waterway. More detailed drilling studies in the saltflats and in the Gran Desierto are necessary to confirm this hypothesis.

The water chemistry survey indicates that the confined freshwater aquifer is only the coastal edge of the large Gran Desierto aquifer which, as it reaches the sea, becomes buried under the Adair Bay clays. At the edge of the Pinacate shield, some 50 km north, the head of the Gran Desierto underground aquifer is 75 m above sea level (Table 2, sample 11, "Rancho Solito"). In the wells that are nearer to the coast, the head of the aquifer lies approximately 3 m above the mean tide level. The data presented here indicate that the underground aquifer of the Gran Desierto slopes toward the sea and is periodically fed by runoff from the extensive Pinacate volcanic shield and other local mountain ranges. The water is slowly transported toward the coast beneath the moving dunes of the Gran Desierto. The clays of Adair Bay saltflats act as a barrier which causes artesian pressure to develop within the underlying sand aquifer.

Phytoecography

Distribution and Affinities of Pozo Species. Twenty-six species of vascular plants were collected at the various pozos at Adair Bay in four trips: June, 1982; November, 1982; January, 1984; and December, 1986. The flora is discussed below and the distributions are summarized in Table 3. The flora is composed mostly of wetland plants with temperate affinities. Five species (19% of the flora) are cosmopolitan, four (15%) are widespread in the Americas, four (15%) are widely distributed in Northern America, five (19%) are from western North America, and eight (31%) are from southwestern North America. While the typical Sonoran Desert flora has a high number of genera and species of tropical or southern affinity or origin [Axelrod, 1979; Shreve, 1951], few taxa of tropical or southern affinity occur among the pozos flora [Prosopis is widespread but generally has a semi-tropical affinity]. The species present have wide distributions or tend to be associated with geographic ranges primarily west or north of the Gran Desierto.

There are three other large springs in relative proximity to Adair Bay: Laguna Prieta [120 km NW] and Quitovac [100 km NE] in Sonora, and Quitobaquito in Arizona [90 km NNE]. The flora of Laguna Prieta has

Table 3. Geographic distribution of pozos plant species and similarity with neighboring waterholes in the Sonoran Desert (CO = cosmopolitan, AM = Americas (North, Central and South America), NA = North American, WA = western North America, SW = southwestern North American [northwest Mexico and the southwest United States], QB = Quitobaquito, Arizona; QV = Quitovac, Sonora, LP = Laguna Prieta, Sonora):

<table>
<thead>
<tr>
<th>SPECIES</th>
<th>CO</th>
<th>AM</th>
<th>NA</th>
<th>WA</th>
<th>SW</th>
<th>SB</th>
<th>ORIGIN</th>
<th>OCCURRENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allomelalea occidentalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
<tr>
<td>Anemonopsis callioccina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
<tr>
<td>Apocynum cannabinum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
<tr>
<td>Asarum intricatrum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
<tr>
<td>Atiplochos baileyana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
<tr>
<td>Baetecis rigidae</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
<tr>
<td>Cupressus lusitana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
<tr>
<td>Distichlis spectata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
<tr>
<td>Eucalyptus rotundata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
<tr>
<td>Heliotropium curassavicum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
<tr>
<td>Juncus acutus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
<tr>
<td>Lycium barbarum</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
<tr>
<td>Nitraria occidentalis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
<tr>
<td>Phaeopogon obtusifolius</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
<tr>
<td>Phacelia oederata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
<tr>
<td>Phacelia sericea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
<tr>
<td>Polygono monteeliensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
<tr>
<td>Prosopis pisonisense</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
<tr>
<td>Rappia maritima</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
<tr>
<td>Saccharus vermiculatus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
<tr>
<td>Salix exigua</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
<tr>
<td>Scirpus americanus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
<tr>
<td>S. maritimus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
<tr>
<td>Sporobolus atriformis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
<tr>
<td>Tamarix ramosissima</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
<tr>
<td>Typha domingensis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SW</td>
<td>QB</td>
<td>QV</td>
</tr>
</tbody>
</table>

TOTALS 5 4 5 8

*Native to the Old World, naturalized in western North America.

Includes adjacent Burro Spring (see Bowers, 1980).
Table 4. Life form spectra of the floras of the Adair Bay pozos and the Gran Desierto.

<table>
<thead>
<tr>
<th></th>
<th>Pozos</th>
<th>Gran Desierto (from Felger, 1980)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microphanerophyte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Shrubs or trees, 2–8 m tall]</td>
<td>3 (11%) Baccharis serrigloides, Prosopis pubescens, Tamarix ramosissima</td>
<td>6 (4.1%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanophanerophyte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Small shrubs, 0.3–2 m tall]</td>
<td>5 (19%) Allionocea occidentalis, Atropis barclayana, Ptelea zeyren, Sarcobatus vermiculatus, Salsola exigua</td>
<td>24 [1.6%]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chamaephyte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Perennating bud less than 0.3 m above ground]</td>
<td>0</td>
<td>14 (9.7%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemicryptophyte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[Perennating bud at soil surface]</td>
<td>15 (58%) Anemopsis californica, Apocynum cannabinum, Aster linicicrus, Cuprae falciatus, Ditrichis spicata, Heliotropium cimaasovicum, Icus acata, Lythrum californicum, Eleocharis rostrelata, Paraphragmites australis, Phleoea odorata, Scirpus americanus, Scirpus maritimus, Sporobolus airoides, Typha donnianesis</td>
<td>11 (7.6%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geophyte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[bud below soil surface]</td>
<td>1 (4%) Nitrophiota occidentalis</td>
<td>3 (2.1%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Therophyte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[ephemeral or annual]</td>
<td>1 (4%) Polygmon mopensiensis</td>
<td>79 (54.4%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parasitic plants</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saprophyte</td>
<td></td>
<td></td>
</tr>
<tr>
<td>[e.g., cacti]</td>
<td></td>
<td>3 (2.1%)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Submerged aquatic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 (4%) Ruppia maritima</td>
<td>5 (3.4%)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>26</td>
<td>145</td>
</tr>
</tbody>
</table>

been studied by Felger [in prep.], that of Quitobaquito by Bowers [1980] and Felger et al. [in prep.], and that of Quitovac by Nabhan et al. [in prep.]. A large percentage of the wetland plant species of the Adair Bay pozos, particularly those at the larger water holes at La Salina, also occur at these other oases (Table 3).

The wetland flora of all these sites probably came mostly from northern temperate areas, via the Colorado and Gila Rivers that flowed in the region until the beginning of this century. The Colorado River delta embraced approximately 300 km² with abundant wetland and aquatic vegetation maintained by periodic floods. Unfortunately its flora was not adequately studied before the delta dried up and salinized due to construction of Hoover Dam and other dams earlier in this century, and the development of the Lower Colorado irrigation projects in Mexico and the United States.

The life-form spectrum of the flora of the pozos is shown in Table 4. In drastic contrast with the surrounding desert vegetation, the pozo flora contains only one annual, Rabbitfoot Grass (Polypogon mopensiensis). Winter-dormant root perennials are a common growth form. Nine species, Herba de Manso (Anemopsis californica), Indian Hemp (Apocynum cannabinum), Lythrum californicum, Reedgrass (Phragmites australis), Pluoea odorata, Bulrush (Scirpus spp.), Alkali Sacaton (Spo-

robulus airoides), and Cattail (Typha domingensis) are winter dormant, while Screwbean (Prosopis pubescens), Sandbar Willow (Salix exigua) and Salt Cedar (Tamarix ramosissima) are winter deciduous. Adaptation to low winter temperatures and the marked seasonal pattern of phenological change indicates temperate or northern affinities. Tamarix ramosissima and Polypogon mopensiensis are the only non-native species present. Both are widespread and the Tamarix is a highly successful invader occurring in riparian and semi-riparian alkaline soils in the Sonoran Desert and elsewhere.

Nitrophila is the first freshwater species to colonize places where freshwater penetrates the saltflat surface. Although generally regarded as a halophyte [e.g., Wiggins 1964], we found it in salt-encrusted sites overlying soils with fresh water. A water sample taken from the rhizosphere of a Nitrophila colony showed electrical conductivity (2.3 mS) similar to that of the pozos and the confined underground aquifer, indicating Nitrophila grows where the underground aquifer has broken through the overlying clay horizon and is reaching the surface. This plant is therefore a reliable indicator of fresh and potable water 20 to 50 cm below the surface, which explains why coyotes often dig holes in the greenery, more luxuriant Nitrophila colonies.

Species-area Relationships. It is a well known fact [e.g., Preston, 1962; MacArthur and Wilson, 1967, Strong, 1974; May, 1975] that the species richness of a given site is an exponential function of the area of that particular site. This relationship is usually expressed as:

\[s = A^z \]

where \(s \) is the species richness, \(A \) the area, \(z \) the exponential parameter [also known as the slope parameter when log-log transformations are used], and \(k \) the scale coefficient. For biogeographical data, the exponent \(z \) usually presents values near 0.25, a fact that has lead to much theoretical speculation [e.g., Preston, 1962, May 1975]. Increasing habitat diversity associated with increasingly large areas may partially explain this mathematical relationship. The species-area function is possibly also determined by the properties of passive sampling, larger areas represent larger samples from the species pool, and will contain more of the rarer species [Conner and McCoy, 1979]. Finally, there is an "area per se" hypothesis, developed by Preston [1960, 1962] and by MacArthur and Wilson [1967], which has been used to explain this relation. Originally derived from the equilibrium theory of island biogeography, this hypothesis explains species richness as a function of the community structure, and of immigration and extinction rates. The three hypotheses are not mutually exclusive and possibly intervene simultaneously in defining the species-area relationships of particular biota in particular environments.

Preston [1962] and MacArthur and Wilson [1967] have shown that, given a "canonical" lognormal species-abundance distribution, the expected exponent for the species-area relationship is \(z = 0.263 \), if the number of species is large. MacArthur and Wilson [1967] however, have noted that when the species counts are made from sample plots of increasing area from the same continent, the \(z \)-values tend to be smaller (0.12–0.17). They think that this deviation from the canonical value can at least
be partially explained as a result of the flooding of small plots by transient species that maintain themselves in nearby but ecologically different areas. By a similar argument, MacArthur and Wilson (1967) support the idea that isolation and the resulting absence of transient species will increase intra-community differences in islands, leading to higher slopes in the species-area relationships. However, some authors (e.g., see Connor and McCoy, 1979) present evidence that contradicts the idea that increased isolation leads to higher values.

Wetland vegetation in an extremely arid environment provides an intriguing example of island-like communities. To test species-area theory against the real world, we used information from eleven of the most accessible pozos. The vegetated areas at these pozos were measured, and the number of species colonizing the patch around the water hole is given in Table 5. [See Table 1 for descriptions and locations of the pozos]. The resulting species-area pairs were fitted to the above species-area equation through a numerical optimization method (direct search, Himmelblau, 1972) and a major-axis fitting procedure on the the log-log transformed data (Sokal and Rohlf, 1969).

<table>
<thead>
<tr>
<th>POZO</th>
<th>SIZE [m²]</th>
<th>NUMBER OF SPECIES</th>
<th>SPECIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patch 1</td>
<td>2</td>
<td>1</td>
<td>Nitrophila occidentalis</td>
</tr>
<tr>
<td>Patch 2</td>
<td>4</td>
<td>1</td>
<td>Nitrophila occidentalis</td>
</tr>
<tr>
<td>Zopilote 3</td>
<td>10</td>
<td>2</td>
<td>Cyperus leucogaster</td>
</tr>
<tr>
<td>Zopilote 1</td>
<td>13</td>
<td>2</td>
<td>Nitrophila occidentalis</td>
</tr>
<tr>
<td>Tres Ojitos 1</td>
<td>19</td>
<td>2</td>
<td>Cyperus leucogaster</td>
</tr>
<tr>
<td>Metate</td>
<td>28</td>
<td>2</td>
<td>Nitrophila occidentalis</td>
</tr>
<tr>
<td>Zopilote 1</td>
<td>28</td>
<td>2</td>
<td>Cyperus leucogaster</td>
</tr>
<tr>
<td>Tornillo</td>
<td>28</td>
<td>3</td>
<td>Nitrophila occidentalis</td>
</tr>
<tr>
<td>Tres Ojitos 1</td>
<td>28</td>
<td>3</td>
<td>Cyperus leucogaster</td>
</tr>
<tr>
<td>La Salina 1</td>
<td>230</td>
<td>6</td>
<td>Anemopappus californica</td>
</tr>
<tr>
<td>La Salina 2</td>
<td>380</td>
<td>7</td>
<td>Nitrophila occidentalis</td>
</tr>
<tr>
<td>La Salina 3</td>
<td>1500</td>
<td>11</td>
<td>Apocynum cannabinum</td>
</tr>
</tbody>
</table>

Both alternative methods gave similar estimates for the parameters: \(k = 0.75 \) and \(z = 0.368 \). The 95% confidence intervals are \(z_{min} = 0.32 \) and \(z_{max} = 0.42 \), and \(k_{min} = 0.63 \) and \(k_{max} = 0.88 \). In both cases the fit was significant \(p < 0.001 \), with determination coefficients \(r^2 = 0.98 \) for the direct search method, and \(r^2 = 0.95 \) for the major-axis fit (Figure 5).

The exponential parameter does not differ significantly from other previously reported values for small islands. Hamilton et al. (1963) reported values of \(k = 0.22 \) and \(z = 0.33 \) for land plants in the Galapagos Islands. Amerson (1975, see also Gould, 1979) reported data which yield values of \(k = 0.2 \) and \(z = 0.39 \) for small (less than 7 ha) sandy, undisturbed islands of the northwestern Hawaiian Islands, while Johnson et al. (1968) report \(k = 0.25 \) and \(z = 0.37 \) for land plants in the Channel Islands of southern California. However, these exponent values are significantly higher than those for most continental land plant communities. Preston (1962), for example, reports \(z = 0.22 \) for the flowering plants of the world, and Johnson et al. (1968) report \(z = 0.16 \) for land plants in the California mainland. A revision of the Galapagos species-area relationships by Werfl (1983) reports data that yields \(z = 0.39 \) and \(k = 0.12 \).

As shown by Gould (1979), when the exponents \(z \) of two curves are similar, the scale coefficients \(k \) can be used to compare the expected species-richness of the two data sets for any given area. Taking into account, for comparison purposes, only the islands' data sets which present exponents similar to that of the pozos curve, it can be seen that the scale coefficient \(k \) is significantly higher for the pozos than for other islands in the literature (to make the comparison valid, the \(k \)-values were all recalculated for areas measured in square meters). Compared to Hamilton et al. (1963) and to Amerson (1975), for any given area the pozos are expected to be approximately three to four times richer in species. That is, for a given area the pozos wetland communities are floristically much richer than island terrestrial florals.

Conclusions

The extensive dune system of the Gran Desierto covers a large underground aquifer which flows from the Pinacate volcanic shield and other mountains in the north toward the Gulf of California in the south. As it approaches the estuary-like clay deposits of Adair Bay, this aquifer is confined under a relatively impermeable clay-mantle which causes artesian pressure to develop. At some localized points the confined fresh water breaks through the overlying layer and flows to the surface in the form of artesian upwellings.

Nitrophila occidentalis is the first plant to colonize places where the aquifer has broken through the overlying clays and reaches the surface or near the surface. This plant is a good indicator of fresh water and is used as such by coyotes. Larger oases are colonized by a more diverse flora.

The vegetation of the pozos contains only two annuals. It has a large proportion of winter dormant peren-
Freshwater Islands in a Desert Sand Sea: The Hydrology, Flora and Phytogeography of The Gran Desierto Oasis of Northwestern Mexico

(Continued from page 44)

nials. This growth form spectrum contrasts with that of the surrounding Gran Desierto as well as that of the rest of the flora of the Sonoran Desert. These desert regions have a high proportion of ephemerals as well as many species with tropical or subtropical affinities which are limited in their distribution by their poor tolerance to winter freezing temperatures [Felger, 1980; Felger and Lowe, 1967; Hastings and Turner, 1972; Neiring et al., 1963; Nobel, 1980; Shreve, 1914, 1951; Turnage and Hinkley, 1938].

In contrast with the tropical-subtropical affinities of the rest of the Sonoran Desert, the wetland vegetation of these sites is associated with northern and more temperate floras. Many of the pozo species are at the southern or eastern edge of their distribution, and some are new records for the Sonoran Desert or Mexican mainland. These species seem to have reached the pozos through the lower Colorado and lower Gila rivers, which are now mostly dry. The delta of the Colorado River [see Leopold, 1949, Sykes, 1937], which at present supports relatively little freshwater vegetation, was probably a major source of propagules and presumably included all of the native pozo species pool as well as the non-native species. With the delta destroyed, the vegetation of the pozos has become highly fragile. The local extinction of any wetland plant species will most probably not be followed by new immigrants of the same flora, but by introduced weeds such as Tamarix.

The species-area relationship [Figure 9] for the pozo species fits the exponential function \(s = 0.75 \times 10^{0.368} \). The exponential parameter \(z = 0.368 \) is similar in value to exponents reported in the literature for plants in other island ecosystems, and is significantly higher than Preston’s “canonical” value \(z = 0.263 \). The scale coefficient \(k = 0.75 \) is significantly higher than those reported for small island ecosystems. A comparison of the coefficients indicates that the species richness of a pozo is nearly four times higher than that of dry terrestrial islands of comparable size.

Using May’s [1975] development of the lognormal model, the species-area relationships obtained from the pozo data can be projected to the whole area of the delta of the Colorado [for the mathematical details of this procedure see Eczurra, 1984]. If the model is fitted to the pozo data assuming a high degree of dominance by some species, it will estimate a total of 192 wetland/aquatic species for the 300 km² of the delta. The estimated total richness rises to 420 species by more realistically assuming that dominance decreases with increasing species size. By way of comparison, the entire flora of the greater Gran Desierto-Pinacate region [northwest Sonora from Sonoyta to Puerto Penasco, westward to the Colorado River] contains approximately 560 species, of which approximately 490 are native [Felger, in prep.]. We therefore estimate that the original flora of the delta included between 200 and 400 wetland/aquatic species. Most of these populations have met local extinction since the delta dried up.

Flora of the Adair Bay Posos

The pozos at Adair Bay support a flora of 23 species of wetland vascular plants. The 23 species fall into 21 genera and 14 families. In addition there are 3 species in 2 families which occur at the pozos but are not characteristic freshwater wetland plants, i.e., Iodine Bush [Allenrolfea occidentalis], Coast Saltbush [Atriplex barclayana], and Alkali Sacaton [Sporobolus airoides], a fourth species, Wishlzenia refracta Engelm., is sometimes present on higher, dryer ground at a few of the pozos but we are not including it among the pozo flora. These four species are much more common in adjacent dryland habitats and only casually extend into the pozo plant communities. By way of comparison, the entire flora of the greater Gran Desierto-Pinacate region contains approximately 49 wetland species [9 are non-native], which represents about 9 percent of the total flora, or about 10 percent of the total flora [native and non-native species].

Herbarium voucher specimens are deposited at the herbaria of the University of Arizona (ARIZ), Herbario Nacional of the Instituto Biologia in Mexico City (MEXU), and the University of Texas (TEX). In most cases duplicates will be found at one or the other of the above herbaria. Specimens cited below are from ARIZ unless otherwise indicated. When more than one collector is listed on a label, only the first collector is cited. Specimens cited by collection number only are Felger’s. A few synonyms are listed, mostly ones not found in the Flora of the Sonoran Desert [Wiggins, 1964]. For more detailed floristic information see Bowers [1980], Correll and Correll [1972], Felger [1980; in prep.], Kearney and Peebles [1960], Mason [1957], Munz [1974] and Wiggins [1964].

Brief ethnobotanical uses are provided to indicate potential influences which earlier people might have had on the history of the flora. Anemopsis and Salix might be the preferred introduction, but since they naturally occur in nearby wetland regions it is doubtful that they were introduced by people.
We are using “Rio Colorado” for the portion of the river in Mexico and “Colorado River” for that portion in the United States. In general we are necessarily using the past tense in discussing the flora of the lower Rio Colorado [Mexico portion of the river system] and its delta, even though some of the species still may be present. The delta flora remains poorly known [although currently being investigated by Felger], and in the general absence of available documented modern data we must assume that most of the original flora has become locally extinct due to extreme desertification in recent decades. Furthermore, most of those few members of the original flora still locally extant exist only in greatly reduced populations and are certainly threatened with local extinction.

APOCYNACEAE—DOGBANE FAMILY
Apoxyonum cannabinum L. INDIAN HEMP (*A. sibiricum* Jacq.); *A. sibiricum* var. *salignum* (Greene) Fernald; *A. hypericifolium* Asit. var. *salignum* (Greene) Bég. & Bel.

Winter-dormant perennial, dying back to rootstock, commonly 0.5–1 m tall, with relatively mesophytic leaves often 6–8 cm long. (Figure 4).

Local distribution: Restricted to wet soil at several pozos at La Salina.

Phytogeography: Widespread from Canada through much of the United States and extreme northern Mexico.

Remarks: This locality is at the geographic margin for the genus. Larger populations undoubtedly occurred in the delta region of the Rio Colorado. Wiggins [1964:1103] reports it near “Whitewater and Twentynine Palms” at the northwestern edge of the Sonoran Desert in California. There are no other records for this genus in the Sonoran Desert.

Exsiccatae: La Salina, wet soil at larger pozos, 84-24, 86-555.

BORAGINACEAE—BORAGE FAMILY
Heliotropium curassavicum L. var. *oculatum* I.M. Johnston. ALKALI HELIOTROPE.

Perennial herbs and sometimes probably facultative annuals, with semi-succulent to succulent leaves and stems.

Local distribution: At one of the pozos at La Soda a few plants were found growing through dense mats of Saltgrass (*Distichlis spicata*). Although not seen at other pozos, it is otherwise common at the edges of many alkaline wetland places in northwestern Sonora.

Phytogeography: This species ranges through much of the warm portion of the Western Hemisphere and has become adventive in the Old World.

Remarks: The La Soda population seems precariously established. The dense cover of *Distichlis spicata* and lack of suitable open ground may be excluding *H. curassavicum* from becoming more generally established at the pozos.

Exsiccatae: La Soda, rare, with *Distichlis spicata*, 86-523.

CHENOPODIACEAE—GOOSEFOOT FAMILY
Allenrolfea occidentalis (S. Wats.) Kunze. CHAMIZO, IOINE BUSH.

Dense, much-branched shrubs locally about 0.5–1 m in height. Stems succulent, leafless, alternately branched. (Figure 2).

Local distribution: Rare at some of the seneceent pozos at La Salina and bordering the saline playas.

Phytogeography: Coastal deserts and inland alkali sinks in western North America.

Remarks: It does not seem to be an established, reproducing member of the “pozo community.”

Exsiccatae: La Salina, edge of saltflat and margins of some pozos, 86-534. Laguna Prieta: 85-744; Ezcurra s.n. [20 Apr 1985, ARIZ, MEXU]; Roth 4.

Atriplex barclayana (Benth.) DC. COAST SALTBUSH.

Suffrutescent perennial, probably not long lived and sometimes flowering the first year. Herbage semi-succulent, often silvery gray-green. Plants usually dioecious but occasionally monoeocious (Figure 2).

Local distribution: A single small colony was found at the margin of one of the La Salina pozos. It is abundant in northwestern Sonora along the shore including sandy beaches and dune habitats and sometimes extends several kilometers inland such as at La Salina.

Phytogeography: Along the shores and near the coast of the islands and both sides of the Gulf of California and along most of the Pacific coast of Baja California.

Remarks: It is not an established member of the pozos community.

Exsiccatae: La Salina, 86-557, 86-558.

Nitrophia occidentalis (Moq.) S. Wats. ALKALI WEED.

Perennials from thickened succulent roots reaching 2.5 cm in diameter and 15 cm or more in depth. Stems and leaves succulent. (Figures 1 and 3).

Local distribution: Dense colonies in alkaline or saline wet places around many of the pozos, and here and there on slightly raised hummocks on the saline flats throughout the Bahia Adair region. Also at Laguna Prieta, along the margins of Rio Colorado, the Rio Sonoyta, and at Quivobaquito.

Phytogeography: Widely scattered on saline/alkaline soils in western North America: Oregon to Nevada and south to southern California, northeastern Baja California Norte, and the Gran Desierto in Sonora.

Remarks: Propagation seems to be largely vegetative. On the saltflats surrounding the Bahia Adair pozos it is the first plant to colonize the localized places where the underground aquifer breaks through the overlying clays to reach the surface. It is a good indicator of fresh water. Coyotes dig at these places in order to get to fresh water. Although the plants often sprawl across the salt-encrusted surface, the roots are deeply seated in relatively non-saline mud. The herbage is frost-sensitive and often freeze-killed in winter. It commonly grows intermixed with *Distichlis spicata*.

Exsiccatae: La Salina, 86-539. La Soda, 84-6. 6 km NW Gustavo Botello, pozos without open surface water, Lopez-Portillo s.n. [7 Jul 1984, MEXU]. Laguna Prieta: 85-740; Ezcurra s.n. [20 Apr 1985, ARIZ, MEXU], 85-740; Roth 1. Muddy banks of Rio Colorado, 20 mi N of El Gufo, 75-60.

Sarcobatus vermiculatus (Hook.) Torr. GREASEWOOD. [S. baileyi Cov.; S. vermiculatus var. baileyi [Cov.] Jeps.]

Much-branched shrubs 1.2–2.4 m tall with stiff, thorn-tipped woody branches and drought-deciduous succulent leaves. Plants monoeocious. Pistillate calyx distinctly winged, the wing developing into a flared collar around middle of fruit, wings becoming dry and papery at maturity (Figure 10).

Local distribution: Common across approximately 100 km in the coastal region between Puerto Peñasco and the delta of the Rio Colorado. Low dunes and sandy soils, often adjacent to saltflats. A small colony of shrubs, about 2 m tall, occurs at one of the water holes at Pozos Tres Ojitos; these shrubs are larger than those of the surrounding desert.

Phytogeography: Also in California, Arizona and New Mexico to Washington, Alberta and North Dakota. It is a characteristic element of the Great Basin Desert. The distribution in the Sonoran Desert is limited (see Benson and Darrow, 1982). The closest known population is near the confluences of the Salt and
Gila rivers near Phoenix and Sacaton in Maricopa and Pinal counties, Arizona. Reports of *Sarcobatus* occurring in Texas are erroneous (J. Henrickson, personal communication 1987).

Remarks: This is the first record of *Sarcobatus* in Mexico. It was not reported for the Sonoran Desert by Wiggins (1964).

Heizer and Elsasser (1980) report that the stems were used for arrow shafts and the plants ashes as medicine, but straight stems are seldom seen among the Sonoran plants. Kirk (1970) says that the tender young shoots are edible, but ethnographic documentation seems to be lacking.

COMPOSITAE—DAISY FAMILY

Aster intricatus [A. Gray] Blake. *Akalii aster. [Aster carmosa* A. Gray, not Gilib., *Bigelovia intricata A. Gray]*

Few-stemmed to bushy perennials, 0.5-0.8 m tall, sometimes dying back to ground during drought. Commonly propagating by rhizomes. Leaves quickly drought-deciduous.

Local distribution: In northwestern Sonora known only from La Soda and Quitovac, also at Quitobaquito. At these oases it grows on alkaline or alkaline-saline soils, at La Soda it is common at senescent pozos and highly localized at some of the immediately adjacent low dunes.

Phytogeography: Northwestern Sonora, Arizona, California, Nevada, and probably in Baja California Norte.

Remarks: It thrives on nearly barren ground where few or no other plants grow.

Exsiccatea: La Soda, 86-521.

Baccharis sergiloides A. Gray. *Eccora amargo, romerillo, desert-broom*

Broom-like woody shrubs about 2–2.5 m tall with multiple stems. Leaves reaching 1.5–4 cm long, narrowly elliptic to oblanceolate or obovate, facultatively drought deciduous. Young shoots and leaves dotted with punctate glands. (Figures 2 and 4).

Local distribution: Locally fairly common at La Salina in small but scattered colonies at some pozos and along the margins of the playa. We found three shrubs of this species at Laguna Prieta. There are no other records for it in Sonora, but since it is common at El Mayor along the Rio Hardy, it probably was also common on the Sonora side of the Rio Colorado.

Phytogeography: California, Nevada, southwestern Utah, Baja California Norte, and central Arizona; mainly in riparian habitats.

Remarks: This species closely resembles and seems to be closely related to *B. sarothroides*, from which it differs in part by having leafier stems, larger, glabrous and oblong-obovate rather than narrowly linear leaves, conspicuously larger and sessile (punctate) glands, smaller achenes, and silky white rather than brownish pappus on mature fertile achenes. Plants from La Salina and Laguna Prieta have these characters except that the pappus bristles are long, (7–) 10 (–11) mm in length, like those of *B. sarothroides* (*B. sergiloides* is reported to have pellate pappus bristles only 4–5 mm long). Thus, in all characters except length of pappus bristles, the plants from La Salina and Laguna Prieta fit the definition of *B. sergiloides*. Perhaps the plants from our region represent intermediates or there may have been hybrid intraspecific. The silky-haired achenes are readily wind-disseminated.

Pluchea odorata [L.] Cass., 1826. (*Conyza odorata* L., 1759; *Conyza purpurascens* Sw., 1788; *Pluchea purpurascens* [Sw.] DC., 1836, *P. camphorata* of various authors, not *P. camphorata* [L.] DC., 1826.)

Perennials in our region from a thick, semi-fleshy root, sometimes with rhizomes. New growth generally emerging in early summer, maturing and flowering in fall, the stems dying in late fall or early winter, winter dormant, the herbage killed by frost. Stems commonly reaching 1–1.5 m tall; leafy, the lower leaves withering as the shoots mature. Fresh green herbage dotted with glands and fuel smelling, with sticky (viscid) as well as soft hairs.

Local distribution: Well-established at many of the pozos at La Salina where it commonly grows beneath *Phragmites* and *Tamarix ramosissima*. Also at Quitobaquito, Laguna Prieta, and seeps and swamps along the lower Rio Colorado. Not known elsewhere in northwestern Sonora.

Phytogeography: Widespread in wet places in North America, often on alkaline soils.

Remarks: According to the International Rules of Nomenclature our plant must be called *P. odorata* (Gillies, 1877). It is a tangled taxonomic trail. The name *P. odorata* has been widely used for the plant now known as *P. symphytifoila* [Miller] Gillies, a shrubby species widespread in tropical-subtropical America. *Pluchea camphorata* [L.] DC. of southeastern United States and northeastern Mexico, is closely related to *P. odorata* and distinguished from it largely by its elongated rather than flat-topped inflorescence.
Eriocaulaceae

La Salina ("La Borrascosa"): 84-30, 86-554.
Laguna Prieta: Ecurra s.n. [20 Ap 1985, MEXU], 85-754; Roth 12.

Pluchea sericea (Nutt.) Cov. Arrow-weed. *Tessaria sericea* [Nutt., Shinners]

Woody shrubs, commonly 1.5–3 m tall. Branches willow-like, long, leafy and erect; herbage densely silvery-hairy.

Local distribution: At the margins of some of the pozos and portions of the playa edge at La Salina. Also at Laguna Prieta, in scattered places near the shores of Bahía Adair, and at the Quitovac and Quitobaquito oasis. Often abundant on sandy, silty, and often alkaline soils along riverbed floodplains and riparian habitats. It was especially abundant along the lower Rio Colorado and its delta, and is still common along mesas near the river and as a weed in nearby agricultural areas. Also common along the floodplain on the Rio Sonoyta.

Phytogeography: Southeastern California to southern Utah and western Texas; Chihuahua, Baja California Norte and northern and western Sonora.

Remarks: The Cocopa esteemed the long, straight stems for house constructions, roofing, and arrow shafts. A prized lac, yellow in color, was collected from the stems and used as an all-purpose plastic adhesive and sealant (Euler and Jones 1956). This lac is common on the extensive stands along the margins of the lower Rio Colorado. Heizer and Elsasser (1980) report that the roots are edible, but this seems improbable unless it was used as a condiment.

Exsiccatae:
- La Salina ("La Borrascosa"). 85-41A, 86-553.
- Laguna Prieta, NE side and base of dunes facing laguna, 85-753.

Cyperaceae—Sedge Family

Cyperus laevigatus L. Flat sedge

Perennials, densely tufted with short rhizomes to mat-forming with creeping rhizomes. Flowering and fruiting at almost any time of year.

Local distribution: Locally dense colonies restricted to wet soil immediately surrounding many of the Adair Bay pozos with open water; La Salina, Pozos Metate and Tomillo, La Salina, Sotelo, and Tres Ojos. Also common in wet soil along the lower Rio Colorado and at Quitobaquito and Quitovac.

Phytogeography: Tropical to warm temperate regions around the world.

Remarks: The plants are often extensively grazed upon by rabbits.

Exsiccatae:
- Pozos 10 km W of Gustavo Sotelo, 84-5. Pozo Sotelo, 84-7. La Salina, 86-552. La Salina, 84-29; 86-549.

Eleocharis rostellata (Tort.) Tort. Spike rush

Perennials with tough rootstocks, forming dense, grass-like mound colonies, the stems leaf-like, bright shiny green, at first upright, then arching over as elongating, often reaching 50–100 cm long, oval-compressed (oblong) in cross-section when fresh, becoming flattened although thick and ridged when dry; some stem tips proliferating (rooting from bulblets or plantlets).

Local distribution: Extensive colonies in wet, alkaline soils at margins of some of the larger pozos at La Salina. Also common in swampy places along the banks of the lower Rio Colorado and at Quitobaquito.

Phytogeography: Across most of North America from southwest Alaska to northern Mexico and the West Indies, and Andean South America.

Remarks: It is not known elsewhere in Sonora.

Exsiccatae: Quitobaquito, 87-296.

Observation: La Salina, Felger, 12 Dec 1986.

Scirpus americanus Pers. *Tule, Bulrush. (S. olneyi A. Gray)*

Perennials with long rhizomes. Stems triangular in cross-section, pithy, to 2 m or more in height. (Figures 2, 11, 12, and 13).

Local distribution: Emergent from shallow water and in wet soil around pozos at La Sota and La Salina. Also at Quitovac, Quitobaquito, along the Rio Sonoyta, Laguna Prieta, and along the Rio Colorado.

Phytogeography: Widely distributed in wetland habitats in North, Central, and South America.

Remarks: The "roots" have been used for food (see Bean and Saubel, 1972). After studying the type specimens, Schuyler (1974) concluded that the bulrush previously known as *S. olneyi* A. Gray should probably be *S. americanus* Pers., and that the plant which western authors have been calling *S. americanus Pers.* should be *S. pungens* Vahl. *Scirpus pungens* is regarded as a closely related but distinct species from *S. americanus*.

Scirpus maritimus L. var. *paludosus* (A. Nels.) Koyama.

Salt-marsch bulrush

Perennials with prominent horizontal rhizomes and triangular, leafy stems arising from a thickened tuberous root; leaves well-developed, often 20–40 cm long.

Local distribution: In southwestern Sonora known only from La Salina where it grows in dense colonies emergent from shallow, alkaline water and wet soil surrounding a few of the local pozos.

Phytogeography: The species is cosmopolitan but this variety is restricted to southwestern North America where it occurs in fresh, saline and alkaline marshes, such as in the Salton Basin and along the Colorado River.

Remarks: The tuberous roots are apparently edible, as are the seeds.

Exsiccatae: La Salina, in wet soil: 84-29, 86-458.

Gramineae—Grass Family

Perennial saltgrass forming dense, matlike colonies; the plants with much-branched and creeping rhizomes and stolons. (Figures 4, 11, and 13).

Local distribution: Locally abundant at most of the pozos and on slightly raised sand hummocks in and around many of the saltflats: often in monotypic stands or with *Nitrophila*. At La Salina it forms 100 percent cover in places along the edge of the playa. Also abundant above the delta along the banks of the lower Rio Colorado and sandy soils only a few meters or even adjacent to the margins of tidal mudflats near the shore in inlets of Bahía Adair.

Phytogeography: Baja California Norte and Sur and near the coast of Sonora at least as far south as the Guaymas region, for the most part, not in tidal marshes in Sonora. Coastal regions on both sides of Canada southward through much of Mexico; the West Indies, and the Pacific Coast of South America; also interior basins of North America.

Remarks: It seems to be a pioneer species in the formation of a pozo. The leaves are salt-excreting and copious condensation of dew running off the stems may wash away some of the salts at the soil surface, and begin the successional process of pozo formation. The plants also act as a sand trap, allowing for a buildup of sand soil. It is also the characteristic plant at older and apparently senescent pozos. For example, the relatively high peaty mound surrounding Pozo Muerto seems to have been built up by this grass. Under conditions of high soil moisture, partial shade and low salinity, such as at La Salina and Laguna Prieta, the
internodes become greatly elongated, the stems unusually tall and slender, and the leaf blades reach more than 11 cm in length. Under drier, more arid, saline conditions the leaves are much shorter and densely crowded.

Phragmites australis [Cav.] Trin. *D. B. CARRIZO, REEDGRASS, COMMON REED (P. communis) Trin.*

Perennial bamboo-like reeds, 2–3 m tall with strong rhizomes and tough roots, the roots often deeply buried in semi-saline or alkaline mud. Leaf’s large, distichous [two-ranked] and evenly spaced, the blades flat. Panicles large and plume-like. New shoots mostly appearing in spring and rapidly growing to full height. Most of the leaves and stems dying during the winter. [Figures 4 and 13].

Local distribution: In dense stands at some of the pozos at La Salina. Also along the banks of the lower Río Colorado, at Laguna Prieta, and Burro Spring near Quitobaquito. Great stands once grew along the lower Río Colorado [Castetter and Bell, 1951:21] and undoubtedly also at the delta. In the late 1980s reedgrass was still abundant at Laguna Prieta and presumably it was even more abundant there than before extensive ground-water pumping in recent decades.

Several widely scattered, highly localized *Phragmites* populations occur at water holes and other wetland habitats in western Sonora and on Tíburón Island [Felger and Moser, 1985].

Phytogeography: This species is cosmopolitan.

Remarks: The spikellets usually break off beneath the long-bearded rachilla, which seems to be an adaptation to wind dispersal. However, in regions such as the Sonoran Desert where the populations are widely disjunct, it seems likely that birds, flying from one water hole to the next, would be major agents of dispersal.

Reedgrass was an important native resource. The stems were used for housing, arrow shafts, musical instruments, cordage, pipes, containers, knives, eating utensils, and many other practical and aesthetic purposes [Bean and Saubel, 1972; Castetter and Bell, 1951; Felger and Moser, 1985; Uphof, 1968]. Although the young shoots are edible [Uphof, 1968], there is no indication that reedgrass was so used in our region. The Cocopa and others collected a sweet manna-like "honeydew," the exudate of scale insects, from the leaves as a highly esteemed food [Heizer, 1945; Jones, 1945]. We have not seen honeydew on reedgrass at La Salina, Laguna Prieta, or Burro Springs.

Polypogon monspeliensis [L.] Desf. *ZACATE COLA DE ZORRA.*

Rabbitfoot Grass.

Non-seasonal ephemerals, highly variable in size depending upon soil moisture, mostly 8–100 cm tall. Leaf blades 3.5–22 cm long, 5–20 mm wide. Panicles very dense and furry-looking with tawny-colored awns, suggesting a rabbit’s foot. [Figures 2 and 14].

Local distribution: At La Salina in partially saline or alkaline wet places with cattails (Typha). Not seen at the other pozos localities. Very common in permanent to temporarily wet and often highly alkaline soils along the riverbed and banks of the Río Sonoyta, as a common agricultural and ruderal weed in sites where the soil is at least temporarily wet.

Phytogeography: Native to Europe, now widespread in western North America.

Remarks: Germinating en masse in December in wet soil around several pozos at La Salina where it locally formed 100 percent ground cover of seedlings. Although it has been in North America for some time, it seems to be spreading in northwestern Sonora. Its advance seems largely correlated with human disturbance of the region. During the late 1970s and 1980s it was found at several widely scattered wet places within the Pinacate region, mostly on semi-saline or alkaline soils.

Exsiccatae: Pozos at La Salina [= La Borrascosa]: Exsicc. s.n. [28 Jun 1982], 86-545. Quitobaquito, 7677.

Sporobolus airoides Tott. *ZACATÓN ALCALINO, ALKALI SACATON.*

Very coarse perennials forming large clumps with tough, knotty bases and well-developed roots. Flowering stems frequently 1.2–1.8 m tall. Grain 0.95–1.2 mm long. Flowering during warmer times of the year, mostly from April to November, the plants dormant during the several cooler months of the year.

Local distribution: Occasionally extending into the margins of the pozo communities on higher, sandy hummocks at some of the senescent pozos. Abundant on surrounding dunes, saline-sandy flats, and sandy soils and low stabilized dunes, from the Río Colorado delta region to Puerto Peñasco. Southward along the Sonora coast to about Tastiota [vicinity 28° 22' N].

Phytogeography: Widespread in western United States and northern Mexico, often on alkaline or semi-saline soils.

Remarks: The grain is edible [Heizer and Elsasser, 1980] and it was probably a significant food resource, especially near the coast. The readily separating grain, produced in large quantity, should be very suitable for harvesting with a basket.

JUNCACEAE—RUSH FAMILY

Juncus acutus L. *SPINY RUSH.*

Large, cespitose, tussock-forming perennial rush resembling a giant pincushion, commonly 0.5–2.2 m tall. Stems and leaves rigid, terete, and spine-tipped. Inflorescences appearing lateral near the ends of the leaf-like stems. Tepals mostly obvolute, the margins with white-membranous wings. Capsules brown, stiff and almost woody, obvoid to subglobose, about 1.5 times or more longer than tepals. [Figure 2].

Local distribution: Common in moist alkaline or saline soils at La Salina: at the pozos, and plays flats immediately adjacent to the playa saltflats, not in the adjacent desert.

Phytogeography: In the Old World and southwestern North America in western Arizona, Baja California Norte and Sur, southern California, southern Nevada, and in Sonora for certain only from La Salina and the vicinity of Bahía Kino.

Remarks: The New World plants apparently are subsp. leopoldii Rengger or var. spathocarpa Engelm.

Juncus acutus closely resembles *J. cooperi* Engelm. except that the latter has narrower tepals and capsules, entire-margined tepals, and shorter capsules. They are obviously closely related and perhaps conspecific. The distributional pattern of the two taxa in our region is perplexing. *Juncus cooperi* occurs in moist alkaline or saline soils at Laguna Prieta, along the Río Colorado, and Quitobaquito; it also occurs in southeastern California, and extreme northeastern Baja California Norte (Felger in prep.). It does not make sense that the Laguna Prieta and Río Colorado populations are actually a different species from the La Salina population. If anything, *J. acutus* at La Salina is out-of-place.

Exsiccatae: La Salina, 86-538.

LEGUMINOSAE—LEGUME FAMILY

Prosopis pubescens Bentham. *TORNILLO, SCREWBEAN.*

Large woody shrubs or small trees sometimes reaching 6 m tall; winter-deciduous, leafing out in spring. Flowering in May and sporadically through summer and fall. Pods produced in substantial quantities during the summer months. [Figures 2, 4, 11, and 13].
Local distribution: Common at La Salina as a large shrub or small tree at the larger pozos and along the edge of the saltflat and base of dunes; occasional scattered trees at a few of the other pozos localities. Also at Laguna Prieta, scattered places along the shore between La Salina and El Golfo—particularly at canyon mouths [e.g., El Tornillo], along the Rio Sonyota and the Rio Colorado where it was once incredibly abundant. Not known elsewhere in Sonora.

Phytogeography: California and northeastern Baja California Norte to western Texas.

Remarks: The larger trees have been cut for firewood, a few axe-cut stumps at La Salina measured 12–30 cm in diameter. The pods were a major source of carbohydrate for people living along the Rio Colorado [Bell and Castetter, 1937]. The wood was used for fuel and house construction, while the roots and bark served as medicine [Bean and Saubel, 1972, Bell and Castetter, 1937, Felger 1977].

LYTHRACEAE—LOOSESTRIFE FAMILY
Lythrum californicum Torr. & Gray

Erect perennials reaching 1.2–2 m tall. Stems soft-wooded, brittle, slender, and with peeling tan-colored bark. Flowering with new growth in late spring, winter-dormant and winter-deciduous.

Local distribution: Well-established in moist or wet soil at the edge of fresh water pools of several of the larger pozos at La Salina.

Phytogeography: Southwestern North America, mostly in non-desert habitats. Wiggins [1964] states that it is rare in the Sonoran Desert, where it is known from the western edge of the desert in southern California and the eastern edge of the desert in Pima County, Arizona. Also along the Gila River in Arizona and in Guadalupe Canyon in northern Baja California Norte.

Remarks: It seems more than likely that there was an extensive population of this species at the delta of the Rio Colorado.

Equisetaceae: La Salina, moist soil at pozos, 84-33, 86-556. Baja California Norte, Guadalupe Canyon, Starr 1.

RUPPIACEAE—DITCH-GRASS FAMILY
Ruppia maritima L. Ditch-grass.

Submerged aquatics, delicate and grass-like, probably facultatively annual and perennial in our region. Fruit hard, brown, nut-like, about 2×1 mm, the single seed about 1 mm in diameter.

Local distribution: One large colony found in warm, shallow water at one of the La Saline pozos [Figure 12]. In the late 19th century it was collected at Colonia Lerdo near the delta of the Rio Colorado.

Phytogeography: This species occurs in fresh, brackish and sea water in many parts of the world.

Remarks: Perhaps it becomes more common at some of the La Salina pozos during the summer. Known from many parts of the Gulf of California, especially the Infernillo Channel on the east side of Tiburon Island, where it grows during hot weather rooted in shallow subtidal seawater in protected bays and estuaries [Felger and Lowe 1976; Felger and Moser 1985]. In these regions fragments of the plants are common in the beach drift during the warmer months of the year, but it is not known from the beach drift at the head of the Gulf. Undoubtedly it was abundant in the delta region of the Rio Colorado.

Equisetaceae: La Salina, in clear water ca. 20-50 cm deep at edge of water hole, roots and rhizomes in soft mud, 86-542.

SALICACEAE—WILLOW FAMILY
Salix exigua Nutt. Sandbar willow, Coyote willow.

Slender spindly shrubs in our region, 1.8–3 m tall, the leaves linear, mostly 3.5–12 cm long, 0.8–2.8 mm wide. Flowering in spring and sporadically on few branches in fall.

Local distribution: Dense colonies grow in wet soil at some of the La Salina pozos. It is an agricultural weed south of San Luis and undoubtedly was once abundant along the lower Rio Colorado and in the delta region.

Phytogeography: There are several broadly intergrading geographic forms with several infraspecific taxa often recognized, and the specific boundaries are likewise blurred. Ours fall into subsp. exigua, the Coyote Willow, which extends from Alberta southward in western United States to northwestern Mexico. Whatever system is followed, the species has a large geographic range, extending from Alaska across much of Canada and most of United States southward to Baja California Norte, northwestern Sinaloa, and Chihuahua.

Remarks: Coyote Willow at La Salina locally grows in extremely dense stands intermixed with Lythrum, Phragmites, Scirpus, and Tamarix. The individual plants are unusually small, wispy, slender, and often few-branched growing up through dense cover and extreme crowding, the leaves relatively narrow even for this narrow-leaved willow. Elsewhere, this widespread species is often characterized as a willow of riverine habitats with running water and flooding such as along sand bars and floodplains.

SAURURACEAE—LIZARD-TAIL FAMILY
Anemopsis californica [Nutt.] Hook. & Arn. HIERBA DE MANSO.

Herbaceous perennial herbs with thick, creeping and aromatic root stocks, and long, above ground stolons. Leaves simple, petioles 3–80 cm long, the blade ovate, 5–15 (30) cm long, 3–7.5 (14) cm wide [drought-stressed plants are often smaller]. Inflorescence an anemone-like cone-shaped many-flowered head [a compact spike] with petal-like subtending bracts [Anemopsis is Greek for "anemone-like," referring to the flower head]. Massive flowering in late spring and summer, the plants facultatively winter dormant, the leaves usually freeze-killed. [Figures 4, 11, and 15].

Local distribution: Extensive colonies at the larger pozos at La Salina, at Laguna Prieta, swampy places at the edge of the Rio Colorado, and at Quimotoquato. At La Salina it frequently grows intermixed with Distichlis spicata, or Eleocharis rostellata, and also often beneath Prosopis pubescens; but the local distribution of Anemopsis is more limited than these often associated species.

Phytogeography: Wide ranging in semi-saline and alkaline wetland soils in southwestern United States and northwestern Mexico.

Remarks: Hierba de Manso has long been highly esteemed for medicinal purposes in western North America [e.g., Bean and Saubel, 1972:38–39; Curtin, 1949:78–79; 1965:215–216; Ford, 1975:341–343; Felger and Moser, 1985:363], and continues to be widely used in Sonora. The Saururaceae are characterized by having etherial oil cells [in the parenchyma tissue] and tannin, which may account for the long and varied medicinal use of Hierba de Manso. At least one of the active ingredients seems to be 4-alllylacetate, a mild antispasmodic principle [Childs and Cole, 1965]. The term manso may be translated as gentle, lamblike, meek, mild, quiet, soft, or tame. Various Sonorans, such as people in Sonoyta, Guaymas, and the Seri, have transplanted, protected, cultivated, and wild-harvested this plant because of its medicinal value. Lumholtz [1912:264–265] gives
Figure 11. La Salina. Near pozo: Screwbean, Saltgrass, and Hierba de Manso. Distant pozo with Salt Cedar, Bulrush, and Saltgrass. Photo by R. S. Felger, December 1986.

Figure 12. La Salina. Habitat of Ditch-grass (Ruppia maritima) at a medium-sized pozo. Bulrush and Saltgrass. Photo by R. S. Felger, December 1986.

Figure 13. La Salina. Exterior of one of the larger pozos. Screwbean, Reedgrass, Bulrush, and Saltgrass. Photo by R. S. Felger, December 1986.

Figure 14. La Salina. Exterior of one of the larger pozos. Salt Cedar and Rabbitfoot Grass seedlings and dead plants from last season. R. S. Felger, December 1986.

Figure 15. Hierba de Manso. Anemopsis Californica. La Salina. June 1982. Photo by Miguel Equihua.
the following account of his experience with Hierba de Manso at La Salina:

A plant (anemonopsis [sic] californica called by the Mexicans herba del manso was a singular growth in these pozos. Its large root, which has a strong medicinal scent, like that which characterizes an apothecary shop, is perhaps the most popular of the many favorite remedies of northern Mexico. It is used internally to cure colds, coughs, or indigestion, as well as externally for wounds or swellings, and is employed in a similar way by the Indians. Of the latter, those who lived in the dune country are said to have been in the habit of chewing bits of this root, as elsewhere tobacco is chewed. These plants grew here in great numbers and to enormous proportions, some of their roots were as much as three feet long and very heavy. The root finds a ready sale everywhere and many Mexicans were not long in gathering as many of the plants as they could carry on their animals. One of the men, whose horse was well-nigh exhausted, walked himself in order to put a load of fifty pounds on his horse.

In the late 1980s it was cultivated in some of the older homes in Sonoyta, primarily as a medicinal plant. Although there is the possibility that earlier people planted it at the La Salina pozos and other waterplaces in the region, these habitats seem "typical" for the species. Hierba de Manso has also been used as a source of tannin and there have been experimental and some commercial plantings of it for tannin production.

TAMARICACEAE—TAMARIX FAMILY

Tamarix ramosissima Ladeb. SALT CEDAR.

Shrub, frequently 2.5 m tall. Leaves small and scale-like, the branchlets winter-deciduous. Flowers pinkish-white to pink.

Local distribution: Common and well-established at many of the La Salina pozos, Laguna Prieta, and at many other wetland habitats in northwestern Sonora. Abundant along the Río Sonoyta, Río Colorado, and as an agricultural weed. (Figures 2, 4, 11, and 14).

Phytogeography: Native to the Old World and established in many other arid and semiarid regions, especially in western North America.

Remarks: The La Salina population is probably increasing at the expense of certain native wetland species, although perhaps a population equilibrium of sorts has been attained. Seedlings and young plants are numerous. Shrubby salt cedars have been established along the Río Colorado and the delta region for at least half a century. In many places shrubby salt cedars have invaded riverine habitats following the demise of the native riparian communities; but cause and effect are difficult to assess since the events have co-occurred chronologically. However, shrubby tamarisk has invaded two primordial, virgin wetland habitats in the Sonoran Desert, places free from human influence until about the present decade: the Sauzal water holes on the south-central side of Tiburon Island (Felger and Lowe, 1976; Felger and Mose, 1985) and the La Salina pozos. The willows at both places seem to be loosing ground to tamarisk. The Sauzal willow is *Salix gooddingii* Ball. Shrubby tamarisk was well-established and common at Sauzal in the early 1960s.

TYPHACEAE—CATTAIL FAMILY

Typha domingensis Pers. TULE, CATTAIL.

Winter-dormant perennials emergent from shallow water and adjacent wet soil. Leaves erect, 2–3 m tall. Flowers densely packed on a tall spike, the staminate part of the inflorescence above the pistillate portion and separated by a barren gap or interval without flowers. (See cover photo, this issue of Desert Plants.)

Local distribution: Well-established colonies occur at some of the La Salina pozos, Laguna Prieta, along the Río Sonoyta, the Sonora banks of the Río Colorado, and along irrigation ditches and farmland south of San Luis. It was once extremely abundant along the lower Río Colorado and its delta.

Localized colonies occur in natural as well as disturbed habitats at widely scattered water holes and wetland places in northwestern Sonora. Some of these populations come and go with the water supply (Felger, in prep.), these repeated introductions are probably the results of bird-introduced seeds.

Phytogeography: As with most cattail species, *T. domingensis* is wide ranging, it grows in brackish and fresh water across the southern two-thirds of the United States and southward through most of tropical America.

Remarks: *Typha domingensis* occurs at many water places within the Sonora Desert, while the closely related *T. angustifolia* is more abundant in non-desert regions.

The Tohono O'odham (Papago) at Quitovac used cattails for basketmaking and the rootstock for food (Nabhan et al. 1982). The Seri and others made use of the pollen for face paint (Felger and Mose 1985:373) and many people used the starchy rootstocks and new shoots for food (Ebeling 1986).

Specimens from our region have obvoid sterile ovaries characteristic of *T. domingensis*, but the leaves are often only 6–8 mm wide, which is rather narrow for this species.

Exsiccatae: Laguna Prieta, 85-751.

Observation: La Salina, Felger, 12 Dec 1986.

Literature Cited

—. In prep. Plants of the Pinacate Region of northwestern Mexico.

