Narrative Nutrient Criteria Development for Arizona Reservoirs

AIS Meeting 2/16/2018

Susan Fitch, Hydrogeologist III/Reservoir Ecologist

ADEQ

High Level Overview

- 2002/2003 began project and hired Malcolm Pirnie (MP) for statistical analysis and modeling
- 2005 Data analysis report/addendum and proposed targets
- 2008/2009 Draft IP; "Matrix of Endpoints" and narrative language promulgated in 2009 in AZ WQS (Region 9 review)
- 2009/2010 EPA Headquarters/peer review (Tetra Tech and Dr. Wurtsbaugh)
- 2010 EPA review* resulted in the need to refine criteria
- 2012 Dr. David Walker (University of Arizona) hired to refine criteria

* Next page

Phase I Peer Review

- Data Issues
 - Questioned TN and TP data/values.. seemed high
 - Questioned relationship of TN and TP to Chlrorophyll-a data/values
- Cold water criteria not protective of salmonids; define "warm", vs. "cool", vs "cold" fishery
- Classification scheme
 - Lack of direct consideration of stratified vs mixed
 - Lack of consideration of dissolved oxygen under stratified conditions
- Questioned protectiveness of Chlorophyll-a ranges
- Use of ranges in "matrix of endpoints"; implementation?
- DO criteria only applies in top 1 m; address DO gradient/hypoxia

Summary of Phase II Project Approach

- Use expanded/updated database (1990 2012) of 68 reservoirs
- Create elevation categories; define "cold" vs "cool" fisheries
- Incorporate DO gradient (hypoxia) analysis
- Refine reservoir classes by size, depth and stratification
- Rerun key statistics
 - Confirm and/or refine nutrient : chlorophyll relationship
 - Add dissolved organic carbon (DOC) and total suspended solids (TSS)
- Establish protective chlorophyll-a endpoints that relate to risk of cyanobacteria blooms
- Replace ranges with bright-line numeric endpoints, while retaining the "matrix of endpoints" and "weight-of-evidence" approach

Determination of Elevation Categories

Bivariate Fit of Elevation (ft) By Water Temp. (C)

Quantiles for all 66 Reservoirs

	Stat %	NO2+NO3	TKN	TN	ТР	CHLOR	DOC
	0.0	0.005	0.010	0.015	0.004	0.060	1.500
	2 5	0.010	0.100	0.110	0.006	0.246	1 500
	2.5	0.010	0.100	0.110	0.000	0.240	1.500
	5.0	0.010	0.200	0.210	0.010	0.700	2.915
	10.0	0.010	0.300	0.310	0.021	1.500	5.060
	25.0	0.030	0.450	0.480	0.032	4.000	6.185
#	50.0	0.090	0.630	0.720	0.060	7.028	8.300
\clubsuit	75.0	0.200	0.920	1.120	0.124	13.100	12.250
	90.0	0.370	1.390	1.760	0.218	34.080	15.300
	97.5	0.738	2.451	3.189	0.518	82.800	22.955
	99.5	3.875	4.230	8.105	5.029	95.628	36.637
	100.0	7.380	15.100	22.480	19.000	127.000	38.400

25th to 50th percentiles used as benchmark for protection of most sensitive designated uses (cold water fishery); 25th as basis for TSI

50th – 75th percentiles could be basis for a **range** of expectation from DWS to FBC to A&W designated uses

TN and TP with Chlorophyll-a (all 66 'lakes')

Log-log Quantiles 2.5 - 97.5

◆TP ■TN

Recursive Partitioning (CART) based on Chlorophyll-a in order of significance

- Catagorical + Nutrients
 - Overall: Dominant geology, TSS/Secchi, TP
 - < 4500: Dominant geology, W:L, % Ag
 - 4500-8000: TP, Dominant geology, size/depth
 - > 8000: Avg surface temp, % range

• Nutrients Only

• Overall: TP, DOC, TN

• < 4500: TN, TP

• 4500-8000: TP, TOC, TN

• > 8000: TKN

Principal Components Analysis (PCA)

Covariance Matrix (log transformed data) R values

- Overall (P)
 - TP w/Chlor-a: 0.58
 - TP w/TOC: 0.41
 - TP w/DOC: 0.39
 - Ortho-P* w/Chlor-a: 0.63

- < 4500 ft (P)
 - TP w/Chlor-a: 1.1
 - TP w/TOC: 0.31
 - TP w/DOC: 0.36
 - Ortho-P* w/Chlor-a: 1.4

- 4500-8000 ft (Co-limitation?)
 - TP w/Chlor-a: 0.09
 - TP w/TOC or DOC: 0.26
 - TN w/Chlor-a: 0.44
 - Ortho-P* w/Chlor-a: -0.48
 - Ortho-P w/TKN: 0.82
- >8000 ft (needs further investigaton)
 - TP w/TKN : -0.37
 - TP w/NO2+NO3: -0.45
 - DOC w/Chlor-a: 0.12 (best of any parameter with Chlor-a)
 - TKN w/Chlor-a: -0.12
 - Too little Ortho-P data

Best Fit Regressions: TP, TN, Chlor-a & Secchi Least Squares (R²) vs Orthogonal (R)

• < 4500 ft

- 25th Chlor w/25th secchi: R² = 0.2; **R = -0.42**
- 25th Chlor w/25th TP: R² = 0.55; **R = 0.75**
- 50th Chlor w/50th secchi: R² = 0.3; **R** = -0.55
- 50th Chlor w/50th TP: R² = 0.66; **R = 0.8**
- 75th Chlor w75th secchi: R² = 0.35; **R = -0.6**
- 75th Chlor w/75th TP: R² = 0.8; **R** = **0.9**
- 4500 8000 ft
 - 25th Chlor w/25th secchi: R² = 0.01; R = -0.11
 - 25th Chlor w/25th TN: R² = 0.18; **R = 0.43**
 - 50th Chlor w/50th secchi: R² = 0.02; R = -0.15
 - 50th Chlor w/50th TN: R² = 0.17; **R** = 0.41
 - 75th Chlor w/75th secchi: R² = 0.05; R = -0.21
 - 75th Chlor w/75th TN: R² = 0.10; **R = 0.30**
- > 8000 ft
 - Need more data

 Lower elevation shows clear trend of decreasing Secchi in relationship to increasing chlorophyll and increasing TP

- Middle elevation shows situation more muddled
 - influence of TN
 - co-limitation
 - impacts of TSS and TOC

AZ Trophic State Index (TSI)

- New method includes TN, TP, secchi and TSS in relation to chlorophyll-a
- Scale of TSI scores based on 50th quantiles
- There is not a consistent relationship across reservoirs, but relationships appear for individual reservoir TN, TP, TSS or Secchi and Chlorophyll-a
- So, the Chlorophyll-a trophic score will set the baseline for comparison and tracking trends over time

Design of the Matrix of Endpoints

- Numeric nutrient criteria will be guided by
 - Quantile relationships per elevation
 - Tiered designated use priority/protection based on most critical use
 - Impact of inorganic and organic particulate matter (spatial and temporal "dystrophy")
 - Presence of potentially toxic cyanobacteria
- Proposed categorical refinements:
 - 3 elevational categories
 - Stratified vs non-stratified (deep vs. shallow) w/ % hypoxia goals
 - Large reservoirs/reservoir in series tracked separately but all subject to same designated use protection
 - Replacement of igneous and sedimentary categories with incorporation of TSS and organic matter influence of clay and silt with associated bound nutrients
 - Seasonal application of criteria to intermittent waterbodies greater than 1 m mean depth
 - Option of site-specific criteria if justified
 - Urban category is still based on constraints of setting and need for active management
 - Effluent dependent waterbodies have been eliminated from the matrix addressed through AZPDES permit

The 2017 Proposed Matrix of Endpoints

Table 1. 2017 Proposed Matrix of Endpoints (Thresholds) for Evaluation of the Narrative Nutrient Standard, R18-11-108(A-D)

ARIZONA LAKES AND RESERVOIRS		RESPONSE VARIABLES			CAUSAL VARIABLES					RELATED VARIABLES					
NARRATIVE NUTRIENT STANDARD: MATRIX for IMPLEMENTATION		Chlorio	Cuanabaat ⁵	Cycpobact ⁵	DO % water column	Derivetion		тр	TOO	DOC	Saaahi ⁶	DO top m			
Designated Lake		Chior-a	Cyanobact	Cyanobact	> 3 mg/L Oligo/Meso/Eutro	Ouartile		IP	155		Secon	тор п	рп		
Elevation	Use*	Category	<i>u</i> g/L	#/ml	percent		of 50 th Quantile	mg/L	<i>u</i> g/L	mg/L	mg/L	m	mg/L	SU	mg/L
> 8000	A&Wcold		< 4		< 50	60%/50%/40%	25 th (of the mean)	< 0.7	< 28	< 3	< 6	> 2.2	7	6.5 to 9	See tal
> 4500	A&Wcool		< 12		< 50	50%/40%/30%	50 ^h - 90 th	< 1.4	< 50	< 10	< 10	> 1.4	6	6.5 to 9	See tal
< 4500	A&Wwarm		< 15		< 50	50%/40%/30%	50 th - 90 th	< 1.4	< 45	< 8	< 8	> 1.5	5	6.5 to 9	See tal
< 4500	DWSwarm		< 10	<20,000		60%/50%/40%	50 th - 75 th	< 1.2	< 35	< 6	< 6	> 1.8	6	6.5 to 9	
> 4500	DWScool		< 10	<20,000		50%/40%/30%	50 th - 75 th	< 1.2	< 50	< 8	< 8	> 1.4	6	6.5 to 9	
any	FBC	Deep ¹	< 10	<20,000		60%/50%/40%	50 th - 75 th	< 1.2	< 35	< 6	< 6	> 1.8	6	6.5 to 9	
any	FBC	Moderate ²	< 12	<20,000		50%/40%/30%	50 th - 75 th	< 1.4	< 50	< 10	< 10	> 1.4	6	6.5 to 9	
any	FBC	Shallow ³	< 10	<20,000		50%/40%/30%	50 th - 75 th	< 1.2	< 35	< 8	< 8	> 1.4	6	6.5 to 9	
any	PBC	Urban ⁴	< 20		< 50	50%/40%/30%	75 th - 90 th	< 1.5	< 60	< 10	< 10	> 0.7	5	6.5 to 9	

*A&Wcold most restrictive, then DWSwarm, FBCdeep and FBCshallow, then DWScool, FBCmoderate, and A&Wcool, then A&Wwarm and Urban/PBC

¹Lake stratifies; > 15 m mean depth

²Lake stratifies; 3 - 15 m mean depth

³Lake does not stratify; < 3m mean depth

⁴Lake in urban setting with "put and take" fishery (seasonal, based on temperature and pH)

⁵Genera with potential for toxin production listed in R18-11-108.03

⁶Secchi targets set in reverse (75th down to 25th quartile of 50th quantile)

⁷pH –dependent (Table 11 in R18-11 Appendix A) or pH and temperature-dependent (Table 12 in R-18-11 Appendix A)

Summary

- Phase II corroborates the earlier finding that nutrient levels are relatively high for corresponding chlor-a (vs. temperate lake systems)
- There appears to be significant spatial and temporal impacts of suspended sediment and organic matter limiting nutrient availability
- Choice of three elevation/temperature categories to better address nature of AZ dynamics and fisheries type
- Separate AZ Game and Fish (AGFD) "put and take" salmonid fisheries(cool) from high elevation or native salmonid fisheries (cold)
- Cold water designated use may be formally designated by AGFD
- Establishing limits on allowable percent hypoxia
- Chlorophyll-a endpoints have been revised to protect against cyanobacteria blooms
- Algae ID data collected since 2003; early warning for HAB testing
- Use of bright-line nutrient criteria for AZPDES permits