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Abstract. Long-term antecedent climate conditions are often overlooked as important drivers of wildfire variability.
Fuel moisture levels and fine-fuel productivity are controlled by variability in precipitation and temperature at long
timescales (months to years) before wildfire events. This study examines relationships between wildfire statistics
(total area burned and total number of fires) aggregated for south-eastern Arizona and antecedent climate conditions
relative to 29 fire seasons (April–May–June) between 1973 and 2001. High and low elevation fires were examined
separately to determine the influence of climate variability on dominant fuel types (low elevation grasslands with
fine fuels v. high elevation forests with heavy fuels). Positive correlations between lagged precipitation and total
area burned highlight the importance of climate in regulating fine fuel production for both high and low elevation
fires. Surprisingly, no significant negative correlations between precipitation and seasonal wildfire statistics were
found at any seasonal lag. Drought conditions were not associated with higher area burned or a greater number of
fires. Larger low elevation fires were actually associated with wet antecedent conditions until just before the fire
season. Larger high elevation fires were associated with wet conditions during seasons up to 3 years before the
fire season.

Introduction

Fire plays a critical role in the maintenance of healthy grass-
land and forest ecosystems and is strongly regulated by
climatic variability (Pyne 1984; Swetnam and Betancourt
1990). This fact is often overlooked, as historic fire suppres-
sion has limited humans’ exposure to the natural fire cycle
that is inherently regulated by local climate conditions. As
public policy shifts towards more ecological land manage-
ment techniques that include restoring natural fire ecologies,
a better understanding of anthropogenic and environmental
controls on fire regimes is necessary. Currently fire regimes
are strongly governed by human land use management poli-
cies as well as long-term and short-term climate conditions
preceding fire incidents. Efforts to restore ecosystems with
fire rely heavily on understanding climate variables such as
precipitation and temperature that regulate the flammabil-
ity of fuels and an ecosystem’s response to fire (Brown and
Betancourt 1999). The mesoscale response of ecosystems to
long and short-term climatic controls is an important but
poorly understood moderator of fire regimes (Swetnam and
Betancourt 1998).

Much research has been done to characterize fire weather,
that is, the weather conditions on the order of days to weeks
preceding fire events (Schroeder 1969; Bessie and Johnson
1995; Flannigan and Wotton 2001). Little work has been done
to reveal how weather conditions before fire events fit into a
larger spatial and temporal setting. Several days or weeks of
above-normal temperatures and below-normal precipitation
are not always the only important climatic factors that dic-
tate the elevation of fire risk (Flannigan and Wotton 2001).
Seasonal, annual, and interannual variability in climate can
regulate fire risk by controlling the production and condition-
ing of fuels in ecosystems (Swetnam and Betancourt 1990;
Westerling et al. 2002). These longer-term climate varia-
tions are often much more important than short-term fire
weather conditions in arid climates, such as the desert South-
west, where there is a seasonal climatology of favorable
fire weather conditions that persist for several months every
year. Large fire events in the desert South-west appear to be
related to complex climatic signatures in antecedent condi-
tions up to several years before the event (Rogers and Vint
1987; Swetnam and Betancourt 1998; Grissino-Mayer and
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Swetnam 2000; Barton et al. 2001). The basin and range
landscape of south-eastern Arizona possesses a unique diver-
sity of ecological community types with unique fire regimes
that may be influenced differently by antecedent climatic
conditions.

The aim of this study is to identify the importance of
antecedent climatic conditions to wildfire variability (total
area burned and total number of fires) across south-eastern
Arizona. A correlation analysis will help isolate relation-
ships between wildfire and climate at specific lags while a
regression analysis will be used to identify which combi-
nations of lagged climate variables have the greatest power
at predicting wildfire activity. Identification of lagged cli-
mate variables strongly related to wildfire variability helps
to identify potential causal mechanisms and can be used in a
predictive capacity to forecast wildfire activity.

Study area

The study area (Fig. 1) is defined by the boundary of Ari-
zona climate division number seven. This climate division

Fig. 1. Study area in south-eastern Arizona.

includes the south-eastern Arizona counties of Pima, Gra-
ham, Greenlee, Santa Cruz, and Cochise. A basin-and-range
relief dominates most of the study area with elevations rang-
ing from over 2800 m at the highest range to 200 m at
western edge low desert locations. Climate in low desert loca-
tions is classified as arid with annual precipitation amounts
rarely exceeding 200 mm. Annual precipitation amounts are
bimodally distributed with most precipitation occurring in
either the summer (JAS) monsoon season or winter (DJFM)
season. Winter temperatures average around 10◦C while sum-
mer maximum temperatures can often exceed 40◦C at lower
elevations. The highest elevations are subject to daily average
temperatures ranging from 4◦C to 25◦C annually and precip-
itation amounts exceeding 1000 mm (SCAS 2003; WRCC
2003). The complex terrain produces high temperature and
precipitation gradients over short distances. A rich diversity
of community types is supported by the steep climatological
gradients. Communities transition from desert scrub at lowest
elevations up through desert grassland, open oak woodland,
pine–oak woodland, pine–oak forest, pine forest, montane fir
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forest, to subalpine forest at highest elevations in the study
area (Whittaker and Niering 1965).

Data and methods

The Laboratory of Tree Ring Research at the University of
Arizona compiled the wildfire data used in this study from
county, state and federal sources for the state of Arizona. The
multi-agency dataset included information for all reported
fires in Arizona for the period 1973–2001. Each record entry
included the fire start date, end date, total area burned and
specific location, if known, recorded by township, section,
and range.All fires with locations were included in this study,
regardless of ignition cause. This includes all lightning fires
as well as human-caused ignitions. Prescribed fires were not
part of the original compilation of the wildfire dataset and
hence were not used in the analysis.

Many challenges exist when using multi-agency wild-
fire data. Under-reporting and accuracy of fire location are
common problems in wildfire datasets (Brown et al. 2002;
Westerling et al. 2003). Less than 5% of the total number of
fires in the present wildfire dataset had to be excluded due to
lack of fire location information. This does not contain every
fire that occurred during the period of record, but is ade-
quate at defining general trends and patterns at the regional
scale.

The study area (Fig. 1) was purposely confined to the
boundary of Arizona climate division seven (AZCD7) to
facilitate the use of divisional data. Monthly values for tem-
perature, temperature anomaly, precipitation, precipitation
anomaly, Palmer Z index, and Palmer drought severity index
(PDSI) were obtained forAZCD7 from the National Climatic
Data Center. Climate division values are calculated by aver-
aging many surface observations within a several-county area
so that a single time series can be generated. This method is
often inadequate in areas with complex topography and few
weather stations and can produce divisional time series that
fail to capture higher elevation climate variability.Time series
data generated forAZCD7 most likely suffer from these prob-
lems; however, few upper elevation weather stations exist in
this region for validation or to use in place of divisional data.
Even with its limitations, the monthly divisional data is prob-
ably adequate at capturing the broader, regional variability in
temperatures and precipitation amounts.

Reanalysis variables from the National Centers for Envi-
ronmental Prediction (700 mb geopotential height, specific
humidity, omega, zonal wind and meridional wind) were
included in the original climatological dataset to investi-
gate the importance of upper level circulation patterns and
moisture levels on wildfire variability. Several time series of
monthly average reanalysis variables were obtained from the
Climate Diagnostics Center for the model grid point closest to
the center of AZCD7. Time series data from surrounding grid
points were highly correlated (r > 0.9) with the target grid
point, demonstrating the insensitivity of data point choice.

Eight reanalysis time series from the target grid point were
screened in the initial correlation analysis. These correlations
between the wildfire statistics and Reanalysis variables were
very similar to the surface variables (PDSI, Z-index, precip.
anomaly and temp anomaly). They did not provide additional
explanatory power and were ultimately excluded to simplify
the presentation of results.

An important aim of this study is to explore the complex
fire–climate relationships that exist along steep ecological
gradients where fine and heavy fuel production and condi-
tioning are dominated by climate variability. High elevation
fire events that occur in heavy, woody fuels are most likely
influenced by different antecedent climate conditions than
low elevation fires in fine, grassy fuels. Elevation was used
as a proxy for fuel type by splitting the original fire events
dataset into a high elevation set and low elevation set.
Whittaker and Niering (1965) conducted an extensive vege-
tation sampling study on several southern Arizona mountain
ranges to characterize the general change in vegetation types
along topographic gradients. They determined that, on most
slopes, desert grasslands transitioned into oak woodlands at
around 1500 m in elevation. This elevation was used as a
breakpoint to separate low elevation grass fires from high ele-
vation forest fires in the event dataset.Additional breakpoints
at 1350 m and 1700 m were also used to evaluate the sensitiv-
ity of using elevation for data stratification. Slight differences
in wildfire–climate correlations were observed depending
on the breakpoint used, but results were generally similar.
This study focuses on the results obtained using 1500 m ele-
vation as the breakpoint between high and low elevations
given the guidance provided by the Whittaker and Niering
(1965) study. Misclassifications of high or low event fires
are possible given the coarse township/range/section report-
ing of fire locations, but this is an unavoidable limitation of
the data. Elevation in this dataset is a coarse approximation
for fuel type and can only superficially represent the com-
plex interaction between climate variability and different fuel
types. Wildfire, climate and vegetation data at higher spa-
tial resolution than currently available are needed to advance
understanding of specific fire–climate relationships across a
landscape of varying fuel types.

The high/low elevation wildfire events and monthly cli-
mate data were aggregated to a seasonal temporal resolution
to aid in the interpretation of lagged relationships. Sea-
sons were defined as winter (DJFM), spring (AMJ), summer
(JAS), and fall (ON). These seasonal definitions stray from
the convention of regular, 3-month seasons, but are more
appropriate for the unique precipitation regime of southern
Arizona. Precipitation is bimodal with more than 50% of
the annual total occurring during the monsoon season (JAS)
and 30% occurring during winter months (DJFM). Wildfire
counts and total area burned were summed for each sea-
son between 1973 and 2001, while climate variables were
converted into seasonal averages. AMJ was designated the
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Table 1. Mean, minimum, and maximum seasonal total area burned in acres and total number of fires for
south-eastern Arizona for the period 1973–2001

Minimum and maximum values are shown in parentheses

Elevation group Data type DJFM AMJ JAS ON

Upper elevation (>1500 m) TAB 99 (0, 2156) 2953 (0, 41 376) 800 (0, 10 791) 20 (0, 157)
TNF 0.9 (0, 7) 7 (0, 30) 3.5 (0, 18) 0.7 (0, 5)

Lower elevation (<1500 m) TAB 655 (0, 4394) 7184 (0, 58 864) 2520 (0, 28 023) 48 (0, 283)
TNF 16 (0, 89) 55 (0, 170) 28 (0, 99) 6 (0, 26)

AMJ, April–May–June; DJFM, December–January–February–March; JAS, June–August–September; ON, October–
November; TAB, total area burned; TNF, total number of fires.

fire season because it experienced the highest levels of fire
activity (Table 1).

Both upper and lower elevation datasets of seasonal total
area burned (TAB) and total number of fires (TNF) were posi-
tively skewed and required transformations before calculating
statistics with normality assumptions. This type of skew in
the data distributions suggested the need for a logarithmic
transformation. The skew was effectively removed from each
through the use of a log10 transformation. Several seasons
with zero TAB or TNF were more than two standard devia-
tions from the mean of the transformed dataset. Given that
these values are unlikely in reality and most likely attributable
to poor fire records, they were removed as outliers to fur-
ther improve the shape of the distributions. Each distribution
passed the Shapiro-Wilks normality test after transformation
and removal of outliers. Climate variables were also examined
for normality. None were excessively skewed or possessed
outliers that would require transformations.

A matrix of bivariate Pearson’s r correlations between the
fire and climate datasets was developed.Total area burned and
TNF values were correlated with coincident seasonal climate
data as well as lagged seasonal climate data. As an example,
this means that April–May–June TAB values were correlated
with April–May–June temperature anomaly values as a cor-
relation with no lag. Seasonally aggregated data were used
rather than monthly data to clarify and aid in the interpretation
of long lag relationships. Additional lagged correlations were
calculated where AMJ TAB was correlated with the prior
season (DJFM) temperature anomaly, two seasons prior
(ON), and so forth, back 16 seasonal lags (4 years). Several
studies have found significant relationships between fire
activity and antecedent climate conditions with fire lagging
climate by over 3 years (Swetnam and Betancourt 1998;
Barton et al. 2001). A window of 16 seasonal lags appears to
be a long enough to capture the lagged relationships high-
lighted in these other studies. Auto-correlation functions
(ACF) were calculated out to 20 lags for each of the cli-
mate variables to assess the potential impact of persistence
or periodicity in the climate time series on the lagged cor-
relations. The ACF fell to non-significant levels (P < 0.05)
after just one season for temperature anomalies, precipitation
anomalies and the Z-index values. Palmer drought sever-
ity index values have inherent persistence so it expectedly

had significant autocorrelation for the first three lags. This
is an important consideration when interpreting the lagged
correlations between PDSI values and wildfire statistics. No
significant autocorrelations were detected past nine months
in the PDSI dataset.

Ultimately 272 correlations were calculated between four
variables at seasonal lags ranging from zero to 16 for four
different datasets (upper TAB, lower TAB, upper TNF, and
lower TNF). This exercise was done to evaluate the discrete
relationship between antecedent seasonal climatic conditions
and wildfire variability and to also identify variables that
would be the strongest predictors in regression equations built
to forecast wildfire activity. To reduce the pool of poten-
tial predictors, only significant correlations (P < 0.1) were
considered as candidates for the regression models.

To further screen the variables and to guard against mod-
eling with many collinear predictors, surface variables with
significant correlations (P < 0.1) were subjected to a rotated
principal components analysis. Five components captured
most of the variance for each of the four predictor subsets (low
elevation TAB, 88.8%; low elevation TNF, 67.4%; high ele-
vation TAB, 85.6%; high elevation TNF, 78.7%). The highest
loading variables on each of the components were identified
and used to form the final pool of predictors.

All combinations of variables in the final pool of predictors
were used to develop the final regression model using SPSS v.
11.0. Regression models were developed with discrete vari-
able combinations entered into each model (stepwise method
not used). Each of the final regression models had the simplest
structure with the greatest explanatory power. Overall model
significance, coefficient significance, and explained variance
(R2) were used to assess model performance. Residuals in the
final models were examined and indicated no violations of
the assumptions of normality or equal variance and absence
of autocorrelation.

Results

Upper elevation fire–climate relationships

Significant (P < 0.1) positive correlations between total
area burned (TAB) and moisture-related climate variables
(Z-index, precipitation anomaly, and PDSI) were concen-
trated in the period eight to four seasons (AMJ[−2] to
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Fig. 2. Correlations between upper elevation total area burned (TAB) and climate variables (n = 27 seasons). Time moves from the left over 4 years
up to the fire season in the right-most column. (a) Z-index, (b) climate division 7 precipitation anomaly, (c) Palmer drought severity index, and
(d) climate division 7 temperature anomaly.

AMJ[−1]) before the zero lag AMJ season (AMJ[0]) (Fig. 2).
This grouping of significant correlations was found during
JAS[−1], ON[−1], and DJFM[−1] for precipitation anomaly
and Z-index. Significant PDSI correlations occur during
the same period plus an additional season (AMJ[−1]). An
additional group of positive correlations between TAB and
moisture-related climate variables was found at JAS[−3],
the July–August–September monsoon season, 3 years before
AMJ[0]. A significantly positive relationship between TAB
and temperature anomaly occurs during AMJ[0] and the
winter season 2 years prior (DJFM[−2]).

The TNF at upper elevations had a different pattern of cor-
relation with climate variables than the TAB values (Fig. 3).
Temperature anomaly had highly significant positive corre-
lations with TNF at short seasonal lags (AMJ[0], DJFM[0],
and ON[0]). PDSI and TNF were significantly related dur-
ing seasons JAS[−1] and DJFM[−1] and at longer lags
(DJFM[−3] through AMJ[−4]). Correlations between TNF

and all moisture-related climate variables were highly sig-
nificant (P < 0.05) during JAS[−3] just as TAB correlations
were at the same seasonal lag.

The regression model developed to predict upper elevation
TAB used two predictor variables that explained 43% of the
variance in AMJ total area burned. The precipitation anomaly
for JAS[−3] and the average PDSI value for the winter season
the year prior (DJFM[−1]) both entered into the final model.
The lagged precipitation anomaly variable was the stronger
predictor in the model with a standardized (β) coefficient of
0.46 over the PDSI β coefficient of 0.349. The model per-
formed reasonably when cross-validated using the ‘leave one
observation out’ method, producing a predicted residual sum
of squares (PRESS) statistic of 0.354.

The upper elevation TNF regression model performed
exceptionally well with two predictors entering into the final
model and accounting for 75% of the variance in AMJ total
number of fires. JAS[−3] precipitation anomalies were again
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Fig. 3. Correlations between upper-elevation total number of fires (TNF) and climate variables (n = 27 seasons). Time moves from the left over
4 years up to the fire season in the right-most column. (a) Z-index, (b) climate division 7 precipitation anomaly, (c) Palmer drought severity index,
and (d) climate division 7 temperature anomaly.

the most important predictor (β = 0.615) with the AMJ[0]
temperature anomaly as the second predictor (β = 0.478).
Model cross-validation produced a PRESS statistic value of
0.705. This value was comparable to the overall model R2 of
0.75, demonstrating the stability of the regression equation
with respect to individual observations.

Lower elevation fire–climate relationships

Most significant correlations between low elevation TAB and
moisture-related variables were found during seasons of the
concurrent year or year before AMJ[0] (Fig. 4). Precipitation
anomaly and Z-index were significantly correlated with TAB
during the seasons of DJFM[0], AMJ[−1], DJFM[−1], and
also during the longer lag season of JAS[−2]. Z-index had
an additional significant correlation during the AMJ[0] while
precipitation anomaly did not. Palmer drought severity index
was significantly correlated at all seasons from JAS[−3]
to the AMJ[0] season. Seasonal temperature anomaly was

significantly correlated with TAB only during the AMJ[0]
season.

No correlations between lower elevation TNF and either
precipitation anomaly or Z-index were significant at any sea-
sonal lag (Fig. 5). Only two seasons (JAS[−3] and AMJ[−4])
were significantly correlated for PDSI and TNF correlations.
Significant correlations between temperature anomaly and
TNF were found for nine of the 17 seasonal lags tested. Sea-
sons with highly significant correlations (P < 0.05) include
several spring seasons (AMJ[0], AMJ[−1], and AMJ[−4])
and one winter season (DJFM[−1]).

Three predictor variables were entered into the final
lower elevation TAB regression model. The β values for
DJFM[0] Z-index (0.676) and AMJ[0] temperature anomaly
(0.637) were very similar, indicating that both variables
weight equally important as predictors. The third variable
was DJFM[−1] precipitation anomaly. With β = 0.243, this
variable added a small amount of additional explanatory
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Fig. 4. Correlations between lower-elevation total area burned (TAB) and climate variables (n = 28 seasons). Time moves from the left over 4 years
up to the fire season in the right-most column. (a) Z-index, (b) climate division 7 precipitation anomaly, (c) Palmer drought severity index, and
(d) climate division 7 temperature anomaly.

power to the overall model R2 of 0.354. Model cross-
validation by the ‘leave one out’ method produced a PRESS
statistic of 0.285.

Correlations were generally weak and non-significant
between climate variables and lower elevation TNF. This lim-
ited the initial number of potential predictors considered in
the regression model. The regression equation for lower ele-
vationTAB included DJFM(0) Z-index suggesting that winter
moisture was important factor in lower elevation fire size.
Correlation patterns in the lower elevation TNF moisture-
related variables were not significant for DJFM(0) but still
indicated that a weak correlation may exist. This guided
the inclusion of DJFM(0) Z-index, precipitation anomaly
and PDSI into the final pool of predictors with AMJ(0)
temperature anomaly. The combination of DJFM(0) precipi-
tation anomaly and AMJ(0) temperature anomaly, produced
a model R2 of 0.505, which was better than any other
combination of predictors from the final pool. When com-
paring β values, the temperature anomaly variable (0.645)
was slightly higher than the precipitation anomaly variable

(0.538). Cross-validating the final regression model produced
a PRESS statistic of 0.397.

Discussion

Short-term weather conditions have traditionally been viewed
as the most important interaction between the atmosphere
and wildfire variability (Schroeder 1969; Bessie and Johnson
1995; Skinner et al. 1999). Several studies have established
that important relationships between wildfire variability and
antecedent climate conditions exist across the western United
States (Rogers and Vint 1987; Swetnam and Betancourt
1998; Grissino-Mayer and Swetnam 2000; Barton et al. 2001;
Westerling et al. 2002). Variability in precipitation and tem-
perature over a period of years can regulate the accumulation
of fine fuels and dictate moisture levels in heavier fuels over
large regions. Our study reveals that even more complex fire–
climate relationships exist when upper and lower elevation
fires are considered separately because of different dominant
fuel types.
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Fig. 5. Correlations between lower-elevation total number of fires (TNF) and climate variables (n = 28 seasons). Time moves from the left over
4 years up to the fire season in the right-most column. (a) Z-index, (b) climate division 7 precipitation anomaly, (c) Palmer drought severity index,
and (d) climate division 7 temperature anomaly.

Correlations indicate that upper elevation TAB is sig-
nificantly related to wet conditions during the year before
larger fire events in the dataset. Perennial native grasses in
south-eastern Arizona respond primarily to warm season pre-
cipitation (Neilson 2003) and may account for the positive
correlation between TAB and moisture-related surface cli-
mate variables. Wetter monsoon conditions may spur on more
perennial grass productivity, creating a greater continuity of
fine fuels across the landscape that would support wildfire
spread.This phenomenon is probably more important for fires
occurring at the lower elevations (close to the 1500 m thresh-
old) of the entire upper elevation dataset, where grasses are
still strongly present as they are in the open oak community
(Whittaker and Niering 1965).

Higher elevation forest communities are likely influenced
by some combination of other climate-regulated fine fuel pro-
duction mechanisms and the one described above. The wet
conditions during all seasons of the year prior may be an
indication that fine fuels are produced by different species in

different ways. The accumulation of leaf litter from decidu-
ous trees may be more dependent on an autumn wet signal
while conifers may drop more needles with higher snowfall
amounts. Both would result in an accumulation of fine fuels
available to carry fire in the following year.

‘Wet’ fire–climate correlations, linked to fuel production,
occur during the year before the fire season (AMJ[0]), but
not necessarily during the year of the current fire season.
Neither wet (positive) nor dry (negative) correlations were
observed between TAB and the three moisture-related sur-
face variables (PDSI, Z-index, and precipitation anomaly).
This suggests that dry conditions were not consistently a pre-
cursor to large upper elevation fire events. These results are
counter-intuitive and contradict several fire history studies
conducted in the desert South-west that found more large
forest fires occurring during unusually dry years (Swetnam
and Betancourt 1998; Grissino-Mayer and Swetnam 2000;
Barton et al. 2001). This is most likely a product of the rel-
atively short time span of the fire event data used in this
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Fig. 6. Time series of lower-elevation total number of fires during the April–May–June (AMJ) season and monthly Palmer drought severity index
(PDSI) for Arizona climate division 7 (CD7).

analysis. The period of record of the dataset is almost coin-
cident with a period (1976–2001) known to be exceptionally
wet with several El Niño events producing record amounts
of winter precipitation across south-eastern Arizona. Palmer
drought severity index values indicate that no long periods
of moderate drought (PDSI < −2) occurred between 1973
and 2001 (Fig. 6). This lack of exceptionally dry conditions
may have suppressed the signal of other fire–climate interac-
tions important to seasonal wildfire activity across the study
area (e.g. extended drought conditions and wildfire activity
in upper-elevation forests).

Variables entering into the final upper elevation TAB
regression equation include PDSI for DJFM(−1) and precip-
itation anomaly for JAS(−3). Both of these variables most
likely represent long-lag, fuel production mechanisms and
together provide a modest degree of explanatory power when
predicting upper-elevation TAB values. It is unclear whether
the 3-year lag on the precipitation anomaly variable is related
to a fuel production and accumulation process that actually
takes 3 years, or if it is an artifact of some areas not burning
immediately after fine fuels are produced. The entire study
area does not burn every year, so the lagged relationship may
extend several years even though fuel production is occur-
ring on a much shorter timescale. Wet seasons may actually
induce conifer needles to drop prematurely and accumulate
as fine fuels. Reich et al. (1994) found that needle life-
span was inversely proportional to water availability in most

major conifer species. Wet conditions may cause faster needle
turnovers and higher fine fuel accumulation rates during this
3-year period between wet signal and TAB response. Nee-
dle accumulations would experience minimal decomposition
over the 3-year period, especially in the ubiquitous Pinus pon-
derosa (ponderosa pine) stands found at upper elevations in
the study area. Murphy et al. (1998) found that P. ponderosa
needles decompose very slowly in semi-arid environments
due to high lignin content. In their study, most sites retained
over 70% of their original mass after 700 days.

Upper-elevation TNF was dominated by a short-lag, posi-
tive temperature correlation reflected in surface temperature
anomalies and also a long-lag, positive moisture variable
correlation at JAS[−3]. This short-term temperature and
long-term moisture pattern enters the upper elevation TNF
regression model as temperature anomaly from AMJ[0] and
precipitation anomaly from JAS[−3]. Above-normal tem-
peratures at short lags, from two seasons prior through the
fire season, may be related to the drying of fuels. Most
moisture-related climate variables were negatively correlated
with TNF during these seasons, but not significantly. The
long-lag precipitation anomaly, which is also present in the
TAB correlations and regression, is most likely related to
a fuel production process. Together, short-term drying and
longer-term fuel production may boost the number of possi-
ble fires that become large enough to be reported. Analyses
with TNF are particularly sensitive to reporting errors in the
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original data. It is likely that many small fires from lightning
ignitions were never observed and reported during the period
of record. The fires captured in this analysis probably were
large enough to be easily observed and, in turn, needed the
fuel production mechanisms to achieve that minimum size.

Lower-elevation TAB has ‘wet’ correlations through sea-
sons of the year prior that extend right up to the AMJ[0]
fire season. This is different from the upper elevation fires
in that fine fuel production may be occurring in the seasons
just before AMJ[0] or during AMJ[0] itself. This is primar-
ily reflected in the significantly positive (wet) correlations
between PDSI and TAB at DJFM[−1] and DJFM[0]. These
winter-time, wet correlations suggest that fine fuel produc-
tion may be in the form of annuals rather than native perennial
grasses which typically respond to warm season precipitation.
Sonoran desert annuals are known to respond to winter pre-
cipitation and can provide a continuous source of fuel across
the landscape in time for the fire season (Rogers and Vint
1987). Positive correlations at both DJFM[0] and DJFM[−1]
also suggest that annuals may both accumulate as litter from
previous years and quickly senesce to be available as fuel for
AMJ[0] fire activity.

The non-native and invasive perennial grass Eragrostis
lehmanniana (Lehmann lovegrass) has quickly spread across
south-easternArizona after being introduced by the Soil Con-
servation Service in the early 1950s as a soil stabilization tool
(Cox et al. 1984). E. lehmanniana has a distinct advantage
over most native perennial grasses in that it is more pro-
ductive with winter season precipitation, when other native
grasses are dormant (Cable 1971). The abnormally wet win-
ters attributed to increased El Niño activity over the past 30
years may have provided an opportunity for the species to
spread at an unprecedented rate, quickly invading areas once
dominated by native species. E. lehmanniana is known to
produce more continuous fine fuels than native grass species
and can do so even during dry years (Cable 1971). The litter
is also highly lignified, meaning that it decomposes slowly,
allowing fine fuels to accumulate over longer periods, which
increases fuel loads (McPherson 1995). The ‘wet’ correla-
tions in AMJ[0], DJFM[0], and DJFM[−1] may all be related
to the increasing presence of E. lehmanniana, because of
its ability to utilize precipitation during these seasons where
other grasses are dormant.

Precipitation anomaly for DJFM[−1] and Z-index value
for DJFM[0] both entered the lower elevation TAB regres-
sion equation and express the importance of fuel produc-
tion, potentially by mechanisms discussed above. The third
regression predictor, temperature anomaly at AMJ[0], likely
represents the importance of fuel conditioning on lower-
elevation grass fires. Very little precipitation typically falls
during a normalApril–May–June season in south-easternAri-
zona, so a negative precipitation anomaly is not necessary to
characterize dry conditions. The absence of a negative cor-
relation between AMJ[0] TAB and precipitation is likely due

to conditions being climatologically dry during this period.
Yet, above-normal temperatures could aid in the senescing
and drying of grassy fuels needed to carry low elevation
fires. This was also an important factor in predicting total
number of fires, with temperature anomaly during AMJ[0]
entering as the most important value for the lower elevation
TNF regression model.

No significant positive correlations emerged between
moisture-related climate variables and lower elevation TNF
as would be expected if antecedent wet conditions and grassy
fuels production were important to the number of fires. There
does appear to be a relationship between the number of AMJ
low elevation fires and soil moisture, but not a clear, linear
one. Fire counts (shown in Fig. 6) did not fluctuate from year
to year but steadily rose between 1982 and 1994 and then
steadily decreased until the end of the record in 2001. The
steady rise in fire counts after 1982 is strikingly coincident
with the very wet period between 1983 and 1989 where two
El Niño events (1982–1983 and 1985–1986) brought record
amounts of precipitation to south-eastern Arizona. In addi-
tion, the 1994 peak in fire counts may be a lagged product
of the above-normal precipitation associated with the 1991–
1992 El Niño event. These unusually wet periods may have
promoted high productivity in perennial and annual grasses,
which in turn helped to overcome fuel continuity limitations
usually present across the desert landscape. Areas with typ-
ically sparse vegetation would then have fine fuels to carry
fires. The total area burned associated with these fires does
not increase steadily over the same time period. This may be
attributed to the wet conditions of the period, limiting the abil-
ity of fires to quickly spread. Also, many of the low-elevation
fires were reported to have occurred close to major roads and
highways. Road access may have aided firefighting, keeping
fire sizes small.

Southern Arizona is especially sensitive to teleconnection
patterns induced by strong El Niño events in the tropi-
cal Pacific (Redmond and Koch 1991). Strong El Niño
events tend to alter winter storm tracks across the western
United States, bringing above-normal precipitation amounts
to southern Arizona (Sheppard et al. 2002). Five of the 10
strongest El Niño events of the last century occurred between
1973 and 2001 (Livezey et al. 1997; NCDC 1998) with
Arizona experiencing some of its wettest winters on record
during this period (NCDC 2003). There is some evidence that
multi-decadal variability in ENSO may modulate the winter
precipitation teleconnection pattern over southern Arizona
(Gershunov and Barnett 1998; Gutzler et al. 2002; Brown
and Comrie 2004). The Pacific Decadal Oscillation (PDO)
appears to capture this low frequency variability in ENSO and
can be useful in tracking large-scale regime shifts in Pacific
Ocean sea surface temperature patterns (Mantua et al. 1997).
A regime shift, as indicated by a change to positive PDO
index values, occurred during the late 1970s which is coinci-
dent with the beginning of a period marked by strong El Niño
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activity and above-normal winter precipitation in southern
Arizona. This wet period may be ending with some indica-
tions of another regime shift in the Pacific Ocean during the
late 1990s, which may change El Niño–winter precipitation
relationships in the south-western USA. If conditions indeed
tend toward below-normal or even average precipitation in the
coming years, the statistical relationships developed between
wildfire and climate, using data from the 1980s and 1990s,
may experience diminished predictive ability. Drought con-
ditions may then be more important in drying heavy fuels
that drive large wildfires. The longer-term build-up of fine
and medium size fuels spurred on by the wet conditions of
the last several decades will only exacerbate conditions by
ensuring fuel continuity across the landscape.

Conclusions

Wet antecedent conditions during seasons from 1 to 3 years
before fire activity appear to be important in controlling fine
fuel production. This relationship was observed in both the
high elevation and low elevation datasets. Wet conditions
most likely promote grass growth as fine fuels for lower ele-
vation fires, but the mechanism related to upper-elevation
fine fuel production is less clear. A complex interaction
between different species producing different litter types
(leaves, grasses, needles) further regulated by antecedent
climate conditions may be occurring at upper-elevation sites.

Fuel conditioning did not appear to be as important as
fuel production with respect to wildfire variability across our
study area. No strong relationships between below-normal
antecedent moisture levels and wildfire TAB or TNF were
observed in either the high- or low-elevation datasets. Short-
term drying of fine fuels is most likely facilitated by the hot
and dry conditions normally experienced during the April–
May–June fire season and may not show up as a strong
negative correlation between wildfire and moisture variables.
The exceptionally wet conditions of the study period may have
also precluded strong dry signals (with respect to wildfire
variability) from emerging in the analyses.

The quality of wildfire data strongly limits the inferences
that can be drawn from analyses like the ones performed in
this study. Lack of complete and detailed fire location infor-
mation clouds potentially strong and insightful relationships
between wildfire and climate. Knowing specifically where
fires start and stop would help to characterize dominant fuel
types that could then be related to antecedent climatic condi-
tions. The ecosystem response through fuel production and
conditioning to climate can only be weakly inferred using the
current, poor quality of wildfire data.

Given these other factors, the importance of climate rel-
ative to wildfire variability will be different from location
to location and through time, depending on the local land
management history of the site. Fire–climate interactions are
driven by processes through the continuum of climatic scales,

but can be fundamentally understood only at the local scale
after accounting for these non-climatic factors.
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