Simple Random Sampling and Systematic Sampling

Simple random sampling and systematic sampling provide the foundation for almost all of the more
complex sampling designs based on probability sampling. They are also usually the easiest designs to
implement. These two designs highlight a trade-offs inherent in selecting a sampling design: to select
sample units at random to minimize the risk of introducing biases into the sample or to select samples
systematically to ensure that sample units are well-distributed throughout the population.

Both designs involve selecting n sample units from the N units available in the population and can be
implemented with or without replacement.

Simple Random Sampling
When the population of interest is relatively homogeneous then simple random sampling works well,
which means it provides estimates that are unbiased and have high precision. When little is known

about a population in advance, such as in a pilot study, simple random sampling is a common design
choice.

Advantages:

e Easyto implement
e Requires little knowledge of the population in advance

Disadvantages:
e Imprecise relative to other designs if the population is heterogeneous
e More expensive than other designs if entities are clumped and the cost to travel among units is

appreciable

How it is implemented:

e Select n sample units at random from N available in the population

All units within the sampling universe must have the same

probability of being selected, therefore each and every

sample of size n drawn from the population has an equal

chance of being selected.

There are many strategies available for selecting a random

sample. For large populations, this often involves generating

pseudorandom numbers with a computer and for small

populations it might involve using a table of random numbers

or even writing a unique identifier for every sample unit in

the population on a scrap of paper, placing those numbers in

a jar, shaking it, then selecting n scraps of paper from the jar

blindly. The approach used for selecting the sample matters




little provided there are no constraints on how the sample units are selected and all units have an equal
chance of being selected.

Estimating the Population Mean

The population mean (u) is the true average number of entities per sample unit and is estimated with
the sample mean (,[1 or ¥ ) which has an unbiased estimator:
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where y;is the value from each unit in the sample and n is the number of units in the sample.

The population variance (0?) is estimated with the sample variance (s?) which has an unbiased estimator:
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Variance of the estimate u is: var(u) = e

The standard error of the estimate is the square root of variance of the estimate, which as always is the
standard deviation of the sampling distribution of the estimate. Standard error is a useful gauge of how
precisely a parameter has been estimated.
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The quantity ( ] is the finite population correction factor which adjusts variance of the estimator

(not variance of the population which does not change with n) to reflect the amount of information that
is known about the population through the sample. Practically, the correction factor reflects the
proportion of the population that remains unknown. Therefore, as the sample size n approaches the
population size N, the finite population correction

factor approaches zero, so the amount of variation
associated with the estimate also approaches zero.
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the effect on the variance of the estimator is slight when N is large. When N is small, however, the
variance of the estimator can be overestimated appreciably.

Estimating the Population Total

Like the population mean, the total number of entities in the population is another attribute estimated
commonly. Unlike the population mean or proportion, estimating the population total requires that we
know the number of sampling units in a population, N.
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where N is the total number of sample units in a population, n is the number of units in the sample, and
yiis the value measured from each sample unit.

In studies of wildlife populations, the total number of entities in a population is often refereed to as
“abundance” and is traditionally represented with the symbol N. Consequently, there is real potential
for confusing the number of entities in the population with the number of sampling units in the
sampling frame. Therefore, in the context of sampling theory, we’ll use 7 to represent the population
total and N to represent the number of sampling units in a population. Later, when addressing wildlife
populations specifically, we’ll use N to represent abundance to remain consistent with the literature in
that field.

Because the estimator 7 is simply the number of sample units in the population N times the mean
number of entities per sample unit, ,[t , the variance of the estimate 7 reflects both the number of units

in the sampling universe N and the variance associated with . An unbiased estimate for the variance
of the estimate 7 is:
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where s? is the estimated population variance.

Example: Estimating a caribou population in Alaska.

Caribou were counted in strip transects that were 1-mile wide. A simple random sample of 15 transects
(n) were chosen from the 286 transects potentially available (N). The number of caribou counted were
1,50, 21, 98, 2, 36, 4, 29, 7, 15, 86, 10, 21, 5, 4.

The sample mean number of caribou counted per transect: =25.93

The sample variance: s = 919.0667
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The estimated standard error of the mean is: +/58.06 = 7.62.

The estimated variance of the sample mean: var(y) = (

An estimate of the total number of caribou in the areais: 7 = 286(25.9333) = 7417
An estimate of variance of the estimated total is: VAr(7) = 286°(58.0576) = 4,748,879

The estimated standard error of the total is: 4/4,748,879 = 2179

Estimating a Population Proportion

If there is interest in the composition of a population, we could use a simple random sample to estimate
the proportion of the population p that is composed of elements with a particular trait, such as the
proportion of plants that flower in a given year, the proportion of juvenile animals captured, the
proportion of females in estrus, and so on. We will consider only classifications that follow binomial
trials which means that either an element in the population has the trait of interest (flowering) or not
(not flowering) although extending this idea to more complex settings is straightforward.

In the case of simple random sampling, the population proportion follows the mean exactly; that is, p =
u. If this idea is new to you, convince yourself by working through an example. Say we generate a
sample of 10 elements, where 4 have a value of 1 and 6 have a value of 0 (1 = presence of a trait, 0 =
absence of a trait). The proportion of the sample with the trait is 4/10 or 0.40 and so is the arithmetic
mean, which = 0.40 ([1+1+1+1+0+0+0+0+0+0]/10 = 4/10). Cosmic.

It follows that the population proportion (p) is estimated with the sample proportion ( p ) which has an
unbiased estimator:

Because we are dealing with dichotomous proportions (sample unit does or does not have the trait), the
population variance o2 is computed based on variance for a binomial which is the proportion of the
population with the trait (p) times the proportion that does not have that trait (1 —p) or p(1 — p). The
estimate of the population variance s?is: p(1— p).
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Systematic Sampling

Occasionally, selecting sample units at random can introduce logistical challenges that preclude
collecting data efficiently. If the chance of introducing a bias is low or if ideal dispersion of sample units
in the population is a higher priority that a strictly random sample, then it might be appropriate to
choose samples non-randomly. Like simple random sampling, systematic sampling is a type of
probability sampling where each element in the population has a known and equal probability of being
selected. The probabilistic framework is maintained through selection of one or more random starting
points. Although sometimes more convenient, systematic sampling provides less protection against
introducing biases in the sample compared to random sampling. Estimators for systematic sampling and
simple random sampling are identical; only the method of sample selected differs. Therefore,
systematic sampling is used to simplify the process of selecting a sample or to ensure ideal dispersion of
sample units throughout the population.

Advantages:

e Easyto implement
e Maximum dispersion of sample units throughout the population
e Requires minimum knowledge of the population

Disadvantages:
e Less protection from possible biases
e Can be imprecise and inefficient relative to other designs if the population being sampled is

heterogeneous

How it is implemented:

e Choose a starting point at random
e Select samples at uniform intervals thereafter

1-in-k systematic sample
Most commonly, a systematic sample is obtained by randomly selecting 1 unit from the first k units in
the population and every k™ element thereafter. This approach is called a 1-in-k systematic sample with

arandom start. To choose k so than a sample of appropriate size is selected, calculate:

k = Number of units in population / Number of sample units required

For example, if we plan to choose 40 plots from a field
of 400 plots, k = 400/40 = 10, so this design would be a
1-in-10 systematic sample. The example in the figure is
a 1-in-8 sample drawn from a population of N = 300;
this yields n = 28. Note that the sample size drawn will
vary and depends on the location of the first unit
drawn.
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Estimating the Population Proportion

The population proportion (p) is estimated with the sample proportion ( P ) which has an unbiased
estimator:

Because we are estimating a dichotomous proportion, the population variance o2 is again computed
with a binomial which is the proportion of the population with the trait (p) times the proportion without
that trait (1 — p) or p(1 — p). The estimate of the population variance s?is: p(1— p).
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How Many Samples?

Optimal allocation is an approach to maximize sampling efficiency; that is to provide high precision for a
given amount of sampling effort.

A different question is how many samples should we take from the population?
First, establish the degree of precision required, B, the bound the error of estimation, which is the half-

width of the confidence interval we wish to attain from sampling. Determine the sample size n required
by setting Z x SE( ¥ ) equal to B and solving this expression for n.

Zis a constant that denotes the upper a/2 point of the standard normal distribution where a is the same
value used to establish the width of confidence intervals.

Population Mean
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Note that if n will be small relative to N, the population correction factor can be ignored, and the
formula for sample size reduced to no.

Example: Estimate the average body mass of male freshman u on campus.

Assume that no prior information exists with which to estimate population variance ¢* but we know that
the mass of most male freshmen is within a range of about 100 pounds and there are N = 1000 students.

How many samples are needed to estimate p with a bound on the error of estimation B = 3 pounds
using simple random sampling?

Although it is best to have data with which to estimate o2, perhaps from a small pilot study, the range is
often approximately equal to 4 o, so one-fourth of the range might be used as an approximate value of
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Substituting: N = 1 ) 1 - 1 ) 1 - 0.0036 + 0.001: 2174
22252 1000 277.78 1000
32

Therefore, about 218 samples are needed to estimate u with a bound on the error of estimation B=3
pounds.

Population Total
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For simple random sampling, solve for n from: B = Z4/N(N - n)7
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Again, if N is large relative to n, the population correction factor can be ignored, and the formula for
sample size reduced to no.

Example: What sample size is necessary to estimate the caribou population we examined to
within B = 2000 animals of the true total with 90% confidence (a = 0.10).

Using s? = 919 from earlier and Z = 1.645, which is the upper a = 0.10/2 = 0.05 point of the normal
286°1645°919
2000°

distribution: n, =

1

To adjust for finite population size: N = 1 1 ~ 44

51" 286
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Stratified Random Sampling

The way we have selected sample units thus far has required that we know little about the population of
interest in advance of selecting the sample. This approach only works best when the characteristic of
interest is relatively homogeneous across the population. If, however, the characteristic is
heterogeneous, then estimates based on these designs will be imprecise. If we have ancillary
information that is associated with the heterogeneity in the population, we can use using alternate
designs to select samples which will yield increased precision for a fixed amount of effort. The first of
these designs is stratified random sampling.

A stratified random sample is one obtained by dividing the population elements into mutually exclusive,
non-overlapping groups (strata), then selecting a simple random sample from within each stratum
(stratum is singular for strata). Every potential sample unit can be assigned to only one stratum and no
units can be excluded.

Stratifying involves classifying sampling units of the population into relatively homogeneous groups,
usually before selecting sample units. Strata are based on information other than the characteristic
being measured that is known to or thought to vary with the characteristic of interest in such a way that
the characteristic is more homogeneous within strata than among strata. Therefore, any feature that
explains variation in the characteristic of interest can be used as a basis for stratifying. For example, if
our goal is to estimate the total number of agaves in an area and we know from previous work that
agave abundance varies with soil type, we might choose to stratify the population by soil type. Because
samples within strata are likely to be more similar than those among strata, sampling error will be lower
and estimates generated within strata will have higher precision than simple random samples drawn
from the same population.

As most ecological systems are heterogeneous, stratifying is a common approach for increasing
precision in ecological studies. Common strata in ecological studies include elevation, aspect, or other
geographic features for studying plant communities and vegetation communities for studying animal
communities. When choosing among potential strata, you should seek to minimize variation within
strata and maximize variation among strata.

Stratified random sampling is appropriate whenever there is heterogeneity in a population that can be

classified with ancillary information; the more distinct the strata, the higher the gains in precision. The
same population can be stratified multiple times simultaneously.

Advantages:

e Higher precision of estimates
e More efficient
e Separate estimates for each stratum

Disadvantages:

e Requires ancillary information
e Can be more time consuming to plan and implement
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How it is implemented:

e Divide the entire population into non-overlapping strata
e Selected a simple random sample from within each strata

L = number of strata
N; = number of sample units within stratum i
N = number of sample units in the population

Estimating the Population Mean

Estimates from stratified random samples are simply the weighted sum of estimates from a series of
simple random samples, each generated within a unique stratum. This should be apparent in the
estimators below, such as that for the population mean, which is an average of the means from each
stratum weighted by the number of sample units measured within each stratum. With only one
stratum, stratified random sampling reduces to simple random sampling.

The population mean (u) is estimated with:
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Variance of the estimate  is again just a weighted average of estimates from a series of random
samples, although it looks a bit cumbersome:
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Estimating the Population Total

Like the mean, estimating a total for a stratified random sample is a matter of summing individual
estimates of the total from each stratum, N, ..

L
The population total 7 is estimated with: 7= Ny, + NI, +---+ N1, = > N/,
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Standard error of 7 is the square root of var(z).

Estimating the Population Proportion
Estimating the proportion of the population with a particular trait (p) using stratified random sampling

involves combining estimates from multiple simple random samples, each generated within a stratum.
The population proportion is estimated with the sample proportion:

L
p=N,p,+N,p, +--+N_p, =2Nif’i
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Variance of the estimate P is:
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Standard error of P is the square root of var(p) .

Example: Simple example of 12 samples taken from a population of 41 entities.

Stratum (/) N; n y s

1 20 5 1.6 3.3

2 9 3 2.8 4.0

3 12 4 0.6 2.2

1 1
Estimate of the population mean: Yy = H[ZO(ZLG) +9(28) + 12(0.6)] = 5[64.4] =157
Estimate of the population total =41 x 1.57 = 64.4.
Estimated variance of the estimated population mean is:
var(y) = i 20(20 5)§+ 9(9 3)4—D+ 12(12 4)2 = 3228 = 0192
V)= : 3 T

Estimated variance of the estimated population total =412 x 0.192 = 322.8.
Allocating Sampling Effort among Strata
After deciding to use stratify random sampling, we need to decide how to divide sampling effort among
different strata; that process is called allocation. When deciding where to expend effort, the question

becomes how best to allocate sampling effort among strata so that the sampling process will be the
most efficient balance of effort, cost, and precision. Should we allocate the same sampling effort to
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each stratum? If strata are of different sizes, as is usually the case, should we allocate more effort to
larger stratum?

There are many strategies for allocating sampling effort, and the more information available about the
population of interest, the more efficient the allocation strategy can be. Information on the variability
of samples within each stratum, the relative cost of obtaining a sample from each stratum, and the
number of sample units in each stratum can all help to increase sampling efficiency. Some of the most
common allocations strategies are uniform, proportional to size, variation, and cost, and optimal, which
simultaneously considers size, variation, and cost or whichever combination of those is available. All
strategies function by create a simple proportional multiplier by which a fixed number of samples can be
allocated among strata.

Uniform Allocation

The simplest allocation strategy is to select the same number of samples from each stratum, which is an
ideal approach if there is no information available about variability of units within strata, the cost of
sampling is similar for all strata, and strata are of similar size.

Allocation Proportional to Size or Variation

The number of sample units to select from each stratum can be made proportional to the number of
sample units (or size) within each stratum. Variation in a stratum often increases with a the size of a
stratum, so in some cases this approach can be considered as a rough approach for allocating more
effort to strata that are likely to be more variable strata. To allocation proportional to stratum size:

To allocation proportional to the amount of variation among elements within each stratum, as
measured by the estimated standard deviation within each stratum:

This approach relies on estimates generated from a previous study or alternatively by the ability to
gauge relative differences in variation among strata, such as expecting one stratum to have 1.5 times
the variation as another stratum.

Optimal Allocation

Both allocation approaches above are special cases of the optimal allocation strategy which estimates
the population mean or total with the lowest variance for a given sample size in stratified random
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sampling. The number of samples selected from each stratum is proportional to the size, variation, as
well as the cost (c;) of sampling in each stratum. More sampling effort is allocated to larger and more
variable strata, and less to strata that are more costly to sample.

=
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