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Abstract. Distance-sampling methods are commonly used in studies of animal popu-
lations to estimate population density. A common objective of such studies is to evaluate
the relationship between abundance or density and covariates that describe animal habitat
or other environmental influences. However, little attention has been focused on methods
of modeling abundance covariate effects in conventional distance-sampling models. In this
paper we propose a distance-sampling model that accommodates covariate effects on abun-
dance. The model is based on specification of the distance-sampling likelihood at the level
of the sample unit in terms of local abundance (for each sampling unit). This model is
augmented with a Poisson regression model for local abundance that is parameterized in
terms of available covariates. Maximum-likelihood estimation of detection and density
parameters is based on the integrated likelihood, wherein local abundance is removed from
the likelihood by integration. We provide an example using avian point-transect data of
Ovenbirds (Seiurus aurocapillus) collected using a distance-sampling protocol and two
measures of habitat structure (understory cover and basal area of overstory trees). The
model yields a sensible description (positive effect of understory cover, negative effect on
basal area) of the relationship between habitat and Ovenbird density that can be used to
evaluate the effects of habitat management on Ovenbird populations.

Key words:  abundance estimation; avian point counts; distance-sampling methodology; mixture
models; Ovenbird; random effects.

INTRODUCTION In many field situations, birds are detected only by their
vocalizations and so it can be difficult to obtain precise
distance information. Consequently, distances are fre-
quently recorded by grouping into discrete distance in-
tervals. We focus subsequent discussion on these point-
transect situations, due to our interest in modeling avi-
an point-count data described in Application . . ., be-
low.

In distance sampling, as with other common sam-
pling protocols, considerable modeling effort is fo-
cused on describing variation in detection probability
(Buckland et al. 2001, Marques and Buckland 2003,
Ramsey and Harrison 2004). To this end, very complex
models of detection probability are often considered.
However, many applications have explicit objectives
that involve understanding mechanisms that affect
abundance. In particular, estimation of the effect of
spatial covariates on abundance isfundamental to many

The use of distance-sampling methods to estimate
density is widespread in studies of animal populations
(Buckland et al. 2001, Williams et al. 2002). Such
methods use information on observed distances of an-
imals from transects or points of observation to char-
acterize the detection probability of individuals. Under
the hypothesis that detection probability is related to
the distance between animals and the point of obser-
vation, one may obtain an estimate of density that is,
in effect, adjusted for nondetection bias.

Distance-sampling methods are attractive in many
animal-sampling problems because they do not require
that individuals be uniquely marked and recaptured (or
resighted) through time. In avian counting applications
based on point counts (Buckland et al. 2001, Rosen-
stock et al. 2002), distances are recorded from a point

of observation (instead of atransect), and thisisusually
referredto asa‘‘ point transect’’ (Buckland et al. 2001).

Manuscript received 9 September 2003; revised 16 January
2003; accepted 19 January 2003. Corresponding Editor: M. S.
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investigations of animal populations. For example,
landscape or habitat characteristics associated with
each spatial sample unit are often collected, and interest
is in modeling the relationship between abundance (or
density) and these measured covariates. Most frequent-
ly, applications that focus on modeling the effect of
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abundance covariates do not explicitly addresstheissue
of detectability, and use conventional techniques such
asregression or generalized linear models for modeling
the observed counts or detection/nondetection (e.g.,
Vincent and Haworth 1983, Robbins et al. 1989, Frie-
sen et al. 1995, Hutto 1995, Young and Hutto 1999,
2002, Fewster et al. 2000, Brand and Georgea 2001,
Vernier et al. 2002, Beadell et al. 2003). This can lead
to biased estimators of habitat effects (Gu and Swihart
2004). There have been few methods developed for
accommodating covariate effects on abundance into
distance sampling or other procedures that directly ac-
count for detectability. Application of conventional
distance sampling (and related) methods to point-tran-
sect data is based on pooling data collected from mul-
tiple point counts. This yields an estimate of average
density, but results in aloss of information at the level
of sample units (e.g., point locations) due to pooling.

We propose a model that allows for incorporation of
abundance covariate effects within distance-sampling
models. We pose thelikelihood for datafrom each point
as a function of “‘local abundance” in the vicinity of
that point. Then local abundance may be related to
covariates using a Poisson or other generalized linear
regression model. Local abundance is regarded as a
random effect, and analysis is based on the integrated
likelihood, which is a function of parameters of the
detection function, density, and relevant density co-
variates. We apply the proposed model to avian point-
transect datathat are typical of those to which distance-
sampling methods are often applied.

DATA AND MODEL

We suppose that point counts of a fixed radius are
conducted at i = 1, 2, ..., R points in some region
(e.g., a park or forest). Each point count represents a
sample of fixed area, which we will refer to asa '’ sam-
ple unit” or “site.”” We consider grouped data here
wherein distances are recorded in discrete intervals
from the central point of observation for each site. Let
k=1, 2, ..., Kindex the distance classes, with end
points (c,, C,), (C,, C3), - - -, (Ck, Cky1). Here, ¢, isthe
maximum distance at which birds were counted, or the
radius of the point count. Let y, be the observed count of
individuals in distance class k for sitei = 1,2, ..., R

Let g(x; 8) denote some function that describes the
relationship between detection probability and dis-
tance, x, from the point of observation. This detection
probability function is parameterized by the (possibly
vector-valued) parameter 6. See Buckland et al. (2001)
for a discussion of possible detection functions and
underlying assumptions.

The key departure from the traditional formulation
of distance-sampling estimators of density that we en-
tertain here is that we consider estimation based on the
unconditional likelihood of the observed counts as op-
posed to the likelihood which is ** conditioned on de-
tection” (see Sanathanan [1972] for a discussion of the
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distinction). This allows direct parameterization of the
likelihood for the data from each site in terms of the
abundance at that site, N;. The main reason for con-
sideration of the unconditional likelihood here is that
modeling spatial variation in N; (or density) is straight-
forward under the unconditional formulation, as dem-
onstrated subsequently. Under the conventional con-
ditional formulation, there is no site-specific quantity
that can be regarded as abundance or density, and that
can be related to site-specific covariates. However,
Hedley and Buckland (2004) recently have developed
an approach based on the conditional likelihood (see
Discussion, below).

In terms of N, the site-specific likelihood for datay;

= (yilv yi2! LR | yiK) iS
file) = & [T mGoy
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x|t 3 m® ' )

wherey,. = 3, Vi

Construction of cell probabilities, m (), is based on
conventional considerations (e.g., Buckland et al. 2001:
chapter 3). Specifically, in Eq. 1, m(6) isthe probability
that an individual occurs and is detected in distance
class k, which depends on the detection function under
consideration. For point transects, this can be computed
by integrating g(x; 6) over the area of the circle between
¢, and ¢, (e.g., see Buckland et al. 2001:54). To be
precise,

m(0) = f 2mxg(x: ) g,

2
” TC+1

We emphasize that w(8) here are unconditional cell
probabilities, in contrast to those considered in most
distance-sampling situations (e.g., the «'s given in
Buckland et al. [2001: chapter 3]).

Modeling variation in abundance among sites

Fundamental to the situation under consideration
here is that abundance may vary among sites due to
measurable environmental characteristics that are also
site specific (e.g., habitat). Thus, we require an exten-
sion of Eqg. 1 that makes this idea precise. For that, we
augment the model with an additional model containing
potential sources of variation in N;. A natural choice
is based on conventional generalized-linear-modeling
(GLM) ideas. Suppose N; were observed, then consider
the Poisson regression model specified by

N; ~ Poisson(\;) 2)

where \; is the expected value of N, typically assumed
to be linearly related to available covariates according
to the following (for a single covariate):
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TaBLE 1. Results of fitting the four candidate models of mean density to the Ovenbird data,
using the Poisson and negative-binomial abundance models.

Candidates np AlC B Qg UFC BA k
Poisson
Model 0 2 340.82 14.23 —0.551
Model 1 (UFC) 3 340.27 14.23 —-0.567 1.859
Model 2 (BA) 3 339.30 14.23 -0.574 -0.829
Model 3 (both) 4 340.67 14.23 -0.578 1.042 —0.643
Negative binomial
Model 0 3 342.73 14.23 —0.551 0.053
Model 1 (UFC) 4 342.26 14.23 —-0.567 1.866 0.016
Model 2 (BA) 4 341.30 14.23 -0.574 -0.832 0.010
Model 3 (both) 5 342.67 14.23 -0.578 1.042 —0.643 0.000

Notes: Explanation of column heads: np, number of parameters; AIC, Akaike information
criterion; B, scale parameter of distance function; «a,, intercept of the abundance model; UFC,
understory foliage cover coefficient estimate; BA, basal area coefficient estimate; k, negative

binomial over-dispersion parameter.

log(\)) = o + a1z (3

where z is the value of the covariate measured at site
i. Notethat in the usual terminology of Poisson models,
\; is density per ‘‘sample unit” (assuming the sample
units are of the same area), and so this model now
includes aparameter that can beinterpreted in amanner
consistent with traditional distance-sampling ideas, but
where density is now spatially explicit. If covariates
are centered to have mean zero, then exp(a,) is the
““mean density.”” One referee suggested incorporating
the term log(wck.,) as an additive offset in Eq. 3 so
that \; has the more precise interpretation of individuals
per unit area (recall that c,,, is the outer limit of ob-
servation beyond which birds are not counted). Also,
if point-count areas are not constant, then this should
be accounted for in a similar manner.

We note that alternative abundance models may also
be considered. An appealing and common model for
describing variation in counts (e.g., animal abundance)
in the presence of over-dispersion (or ‘‘ excess-Poisson
variation’”) isthe negative-binomial (Boyceet al. 2001)
model. A common parameterization of the negative bi-
nomia (we use this parameterization in Application
..., below) is that in which E[N] = \ and Var[N] =
N + k\?2 where k > 0 is the ‘‘over-dispersion’” param-
eter. Thus, Var[N] = E[N] and in limit (as k goes to 0)
the negative binomial is equivalent to the Poisson dis-
tribution. As with the Poisson, a log-linear model re-
lating covariates to mean abundance may be used.
Abundance models other than Poisson or negative bi-
nomial that allow for more flexibility in modeling over-
dispersion may also be considered (e.g., see Bhatta-
charya and Holla 1965, Agarwal et al. 2002, Puig
2003). In practice it may be desirable to formally
choose among several plausible models of abundance
given observational data. When inference is based on
the integrated likelihood described subsequently, mod-
el selection may be carried out using AIC (Akaike in-
formation criterion; Burnham and Anderson 1998).

In contrast to many conventional applications of
Poisson regression, the N, are not observable in dis-
tance-sampling problems. A solution that yields a pre-
cise treatment of the likelihood (Eq. 1) in the context
of the Poisson regression model (expression 2) is to
regard N; as unobserved random effects with distri-
bution given by expression 2 and, following conven-
tional notions of the treatment of random effects (e.g.,
Laird and Ware 1982, Robinson 1991), integrate them
from the likelihood (Eq. 1). This yields a marginal
likelihood (often referred to as the “‘integrated likeli-
hood’’) that is only a function of detection parameters
(contained in g(x; 6)), and density parameters «, and
og.

The integrated likelihood

The integrated likelihood for the data from site i is
formulated by integrating Eq. 1 over therandom-effects
distribution (expression 2):

. O N
L(a,0]y) = 2 O - 1_[ ’ﬂ'k(e)y“‘]
Ni=yi. k
il:[ yik!>(Ni -y
Ni=yi.[] —Nie)) Ni

x |1 - ; () E%.
D I
- (@)

Note that the dependence of \; on the parameters o« =
(o @) is emphasized in this expression.

One benefit of the Poisson abundance model is that
the summation in Eqg. 4 can be done analytically, yield-
ing the product Poisson likelihood:

Le, 0]y) = El Poisson] yix; Ai(e)m(0)].  (5)

The simplelikelihood obtained under the Poisson abun-
dance model is more computationally efficient than the
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general mixture form given by Eq. 4. For other abun-
dance models (such as the negative binomial) Eq. 4
does not simplify in any meaningful way.

Assuming the data are independent across sites, the
joint likelihood for all data is then

R

¥R = ] L(e, 0]y)). (6)

i=1

L, 0]y, ..

Practically speaking, independence here implies that
point counts are made sufficiently far apart so as to
ensure that the same individuals are not being counted
at multiple sites. Consequently, this may only be rea-
sonable for species that can be sampled at a time when
individuals are territorial or sedentary. Note that in-
dependence underlies all of the conventional distance-
sampling methods and so it should not be viewed as
an assumption that is specific to the proposed model.

The integrated likelihood (Eg. 6) can be maximized
using conventional numerical methods. For the analyses
reported in the following section, we devel oped our own
routines using the free software R (Ihakaand Gentleman
1996). Note that for abundance models other than the
Poisson, the upper bound appearing in the summation
of Eg. 4 must be truncated at some finite integer. One
can check that the chosen cut-off was sufficient by in-
creasing its value and verifying that the MLES (maxi-
mum-likelihood estimators) are unchanged.

As afinal comment, note that it is possible to esti-
mate individual N;'s using what is usually referred to
as best unbiased prediction (BUP), although there is
often no obvious need to do so since most inferential
problems focus on density (‘‘average abundance’) ef-
fects. See Royle (2004) for details.

Evaluating model goodness of fit

Under the Poisson model, the conventional deviance
statistic for Poisson data (Agresti 2002) may be used
in sufficiently large samples. However, small counts
such as those generated from our study (and perhaps
most studies based on avian point-count surveys) ren-
der the asymptotic null distribution of this statistic in-
valid. Also, aconvenient deviance statistic (that is, with
a known asymptotic null distribution) under other
abundance distributions has not been developed. Con-
sequently, we considered assessment of goodness of fit
using conventional parametric bootstrap procedures
(Dixon 2002).

APPLICATION TO AVIAN PoOINT-COUNT DATA

Here we consider avian point-count data collected
in late May and June of 2002 at 70 sitesin the Catoctin
Mountains, Frederick County, Maryland, USA. To as-
sess the possible impacts of white-tailed deer (Odo-
coileus virginianus) on natural resources in the Catoc-
tin Mountain Park, a unit of the National Park Service,
breeding-bird populations and vegetation were sampled
in the park and in the nearby Frederick City Watershed
Cooperative Wildlife Management Area, where deer
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numbers are controlled by hunting. Thirty-five sitesin
each area were randomly selected for sampling from a
grid of points, spaced at 250-m intervals, generated in
Arcinfo (ESRI, Redlands, California, USA).

At each site, a 12-min count was made of all birds
seen or heard. Distances to detected birds were re-
corded in 25-m distance classes out to 100 m from the
point. Observations of two covariates thought to influ-
ence local hird abundance were also collected: percent
understory-foliage cover (UFC) and basal area of over-
story trees (BA; in square meters). Understory vege-
tation was sampled by counting the number of height
intervals (0-0.1 m, >0.1-0.3 m, >0.3-0.5 m, >0.5—
1.0 m, >1.0-1.5 m, >1.5-2.0 m, >2.0-2.5 m, and
>2.5-3.0 m aboveground) in which live vegetation in-
tersected a pole planted at 3-m intervals along 25-m
transects that radiated from the point in the cardinal
directions (north, south, east, west). For each point,
UFC is the percentage of the height-interval samples
in which vegetation was present. A forestry prism (bas-
al area factor: 10) was used to sample overstory basal
area at each point (Hovind and Rieck 1970).

The goal isto evaluate the relationship between bird
density and these habitat characteristics. In this illus-
tration, we consider counts of male Ovenbirds (Seiurus
aurocapillus), which are detected primarily by song.
Ovenbirds are a ground-nesting species, and so it is
suspected that understory vegetation serves to provide
nesting cover. Conversely, excessive overstory (mea-
sured by BA) impedes the development of understory
cover. Consequently, we expect a positive relationship
between N, (abundance at site i) and UFC and a neg-
ative relationship between N; and BA. These covariates
were standardized to have mean zero, and incorporated
into the abundance model asin Eq. 3, with the additive
offset log(). Because the point-count radius was 100
m, \; is interpreted as the number of individuals per
hectare (10000 m?). We used a ‘‘half-normal’’ detec-
tion function to model the relationship between detec-
tion probability and distance:

258

Note that the denominator is scaled so that the (equally
spaced) distance intervals are bounded by the integers
(0, 1), (1, 2), (2, 3), and (3, 4).

We considered four possible models of density to
describe the Ovenbird data using both the Poisson and
negative-binomial models for abundance (eight models
in al). Model 0 contained neither covariate. Models 1
and 2 contained only UFC and BA, respectively, and
Model 3 contained both covariates. Results of fitting
these models are given in Table 1. To evaluate the
relative merits of each model, the AIC score (Burnham
and Anderson 1998) for each model is also given.

We note that the estimated over-dispersion parameter
of the negative-binomial model is near O in all cases

g(x; 6) = eXp<_X—2)-
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Fic. 1. Estimated Ovenbird density as a function of un-
derstory foliage cover (UFC; top panel) and basal area (BA;
bottom panel).

(Table 1). Consequently, the estimates of the other pa-
rameters in the negative-binomial models are essen-
tially equivalent to those of the corresponding Poisson
models. Thus, AIC favors the simpler (more parsi-
monious) Poisson abundance model. Among the Pois-
son models, those with one or the other covariate (but
not both) are preferred. Note that the two covariates
are negatively correlated with one another (sample cor-
relation, p = —0.49), and thus they contain redundant
information. This explains why the model with both
covariates has a higher AIC despite the apparent im-
portance of each covariate individually.

The signs of the coefficient estimates are as antici-
pated (positive relationship between abundance and
UFC, negative for BA). The estimated effect of each
covariate (on the density scale) is depicted graphically
in Fig. 1 where \ is plotted as a function of UFC and
BA using estimates obtained from the corresponding
models. Thus, for example, as UFC increases from O
to 50%, density increases from approximately 0.4 to
1.1 Ovenbirds/ha.

Goodness of fit was evaluated for the best fitting
Poisson model using the parametric bootstrap proce-
dure based on model deviance. This indicated no sig-
nificant lack of fit (P = 0.726).

Finally, note that the estimated scale parameter (B
in Table 1) is the same to within two decimal places
for all eight models considered. Apparently, it is un-
affected by variation in N as might be expected (note
that the N;'s can be removed by conditioning).

DiscussioN

We have proposed a modeling approach that allows
for incorporation of covariate effects on abundance in
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distance-sampling models. The key idea underlying
this model is the formulation of the (multinomial) dis-
tance-sampling likelihood in terms of site-specific
abundance parameters, N;. These are regarded as ran-
dom effects and assigned a distribution wherein the
mean depends on the covariates under consideration.
The marginal likelihood of the data is constructed by
integrating the multinomial likelihood for the data over
this random-effects distribution.

The model proposed here expands on that considered
by Royle (2004) for estimating abundance from point-
count data. That model is based on simple point-count
data (i.e., with no distance information), and also uses
an integrated likelihood wherein the binomial likeli-
hood for the observed counts is integrated over a Pois-
son prior distribution on N,. See also Royle and Nichols
(2003) for asimilar strategy for modeling heterogeneity
in detection in occupancy surveys that is due to vari-
ation in abundance. That idea has been used here to
facilitate modeling structure in site-specific abundance
under a multinomial distance-sampling model.

Distance sampling is widely used to estimate abun-
dance of animal populations, and the underlying theory
is well developed and intricate. Despite this, until re-
cently, relatively little attention has been focused on
the development of distance-sampling methods that al-
low for modeling covariate effects. Note that Buckland
et al. (2001) contains a single section (3.8) devoted to
the topic. Much of what has been done has focused on
modeling covariates that affect detection probability
(e.g., Ramsey et al. 1987, Marques and Buckland 2003,
Ramsey and Harrison 2004). To the best of our knowl-
edge, only Hedley et al. (1999) and Hedley and Buck-
land (2004) consider models that allow for covariate
effects on abundance. These recent efforts focus on
formulating distance-sampling models in terms of the
spatial-intensity function of a Poisson point process
and adopt the more common conditional formulation
of the likelihood for the observation locations of in-
dividuals. The resulting likelihood is not analytically
tractable and appears unstable for complex intensity
functions (Hedley and Buckland 2004). This motivates
Hedley and Buckland (2004) to suggest a more infor-
mal approach that first estimates the detection function,
and then uses a *‘plug-in’’ type of procedure based on
the partial likelihood of the observed counts. Our ap-
proach is similar in the sense that the abundance model
is derived from consideration of a spatially varying
intensity function. However, formulation of the prob-
lem in terms of the unconditional multinomial likeli-
hood (a function of local abundance) and then inte-
grating over a prior distribution for N (containing co-
variate effects), yields a well-behaved likelihood. In
the case where the prior is Poisson, the likelihood is
of closed form (a product Poisson likelihood). Gen-
erality to other abundance distributions (determining
mean-variance relationships) can also be considered,
and it is not clear how this can be accommodated in
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the likelihood considered by Hedley and Buckland
(2004).

A natural result of aspatially explicit formulation of
abundance models is that one may produce maps of the
density surface over the sample domain, or predict
abundance at unsampled sites. Thisisnecessary if char-
acterizing the total population size is required, and re-
quires that the spatial covariates are measured every-
where. Hedley and Buckland (2004) consider spatial
mapping of the intensity function in their application,
which involved covariatesthat were functions of spatial
location (e.g., spatial regression functions).

While our focus here has been on point-transect data
collected according to a distance-sampling protocol,
the general notion is clearly applicable to more com-
mon distance-sampling situations that make use of tran-
sects, when landscape or habitat covariates can be mea-
sured for each transect, or segments of each transect.
Also note that the general modeling strategy proposed
here can be applied regardless of the form of the mul-
tinomial likelihood. In particular, it can be applied to
problems where the multinomial likelihood is based on
other sampling protocols such as multiple observer
(Nichols et al. 2000), removal (Farnsworth et al. 2002),
and even conventional capture-recapture when there
are spatially indexed samples. As with distance sam-
pling, modeling covariate effects on abundance has
been a deficiency in modeling data collected under
these sampling approaches and, consequently, the pro-
posed model can be used to address this objective in
a formal manner.

Our application of the proposed model to Ovenbird
counts provides a compelling illustration of the poten-
tial management utility of being able to assess covariate
effects within a distance-sampling framework. In par-
ticular, the model provides a concise linkage between
measurable habitat structure and Ovenbird density.
Consequently, it allows for evaluation of the effect of
habitat-management actions on bird density. For ex-
ample, the density of Ovenbirdsincreases asunderstory
foliage cover increases (Fig. 1). We note that the du-
ration of the point count should be an important con-
sideration prior to data collection and the 12-min count
duration used in our study is probably excessive. Abun-
dance estimation methods based on point counting must
be regarded as instantaneous in time. As sampling du-
ration increases, the effect of ‘‘temporary emigration”
(Kendall et al. 1997) will lead to some bias in mean
density but will not lead to biased covariate effect es-
timates.

One referee was concerned about potential bias in
density estimates obtained in our study due to potential
heterogeneity as a result of habitat effects on detect-
ability. That is, while we have biological reasons to
suggest that these habitat covariates affect abundance,
it is plausible that they also affect detectability. To
evaluate this, we considered the distance class fre-
quency of detectionsfor each of threelevels (low, mod-
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erate, high) of the BA (basal-area) covariate (the model
with the best AIC score). The frequencies of detections
in each of the four distance classes were (3,6,16,5),
(4,7,11,9), and (0,3,7,6) for low, moderate, and high
values of the BA covariate. A simple chi-square test
of homogeneity yields x2 = 5.097 (df = 6, P = 0.531),
suggesting no difference between these distance-fre-
quency distributions. We note also that our bootstrap
goodness-of-fit procedure indicates that thereis no sig-
nificant lack of fit, suggesting that thereisno additional
heterogeneity, such as due to habitat effects on detec-
tion probability. Consistent with this point, note that
the fitted negative-binomial models are essentially
equivalent to the Poisson models. Finally, we note that
detection covariates can be modeled easily in the half-
normal distance function (Marques and Buckland
2004) and so this idea could conceivably be used to
extend the model considered here to include covariate
effects on both detection and density. However, we
believe that the identifiability of habitat effectsin both
detection and abundance (i.e., of the same habitat var-
iables) will be highly sensitive to model structure.
Thus, when a particular covariate affects both detection
and abundance, we believe that biologists will have to
make a priori judgments about the most sensible way
to partition variance and attempt to design surveys that
minimize this possibility.
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