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SUMMARY. Spatial replication is a common theme in count surveys of animals. Such surveys often generate
sparse count data from which it is difficult to estimate population size while formally accounting for detection
probability. In this article, I describe a class of models (N-mixture models) which allow for estimation of
population size from such data. The key idea is to view site-specific population sizes, N, as independent
random variables distributed according to some mixing distribution (e.g., Poisson). Prior parameters are
estimated from the marginal likelihood of the data, having integrated over the prior distribution for N.
Carroll and Lombard (1985, Journal of American Statistical Association 80, 423-426) proposed a class of
estimators based on mixing over a prior distribution for detection probability. Their estimator can be applied
in limited settings, but is sensitive to prior parameter values that are fixed a priori. Spatial replication
provides additional information regarding the parameters of the prior distribution on N that is exploited by
the N-mixture models and which leads to reasonable estimates of abundance from sparse data. A simulation
study demonstrates superior operating characteristics (bias, confidence interval coverage) of the N-mixture
estimator compared to the Caroll and Lombard estimator. Both estimators are applied to point count data
on six species of birds illustrating the sensitivity to choice of prior on p and substantially different estimates

of abundance as a consequence.
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1. Introduction

Estimation of the size of a binomial population using capture—
recapture methods has a long history in studies involving
animal populations (Seber, 1982; Pollock, 2000; Williams,
Nichols, and Conroy, 2002). The essence of such methods
is accounting for capture probability using recapture, re-
sighting, or similar information on marked individuals in the
population.

Capture-recapture studies can be difficult to implement.
These studies typically require intense effort, and may not
even be practical in instances where marking is difficult, or
when the population experiences intense movement, mortal-
ity, and other forces. Even where practical, if the population
size is small or the capture probability is low, it may be dif-
ficult to acquire enough data to ensure reasonable estima-
tion of N. On the other hand, counting organisms without
explicit regard to their identity is convenient and forms the
basis of many large-scale animal monitoring programs (e.g.,
North American Breeding Bird Survey [BBS], North Amer-
ican Amphibian Monitoring Program [NAAMP], Christmas
Bird Count [CBC]) and many more focused ecological stud-
ies. Monitoring programs such as these yield a large number
of spatially indexed counts that can be characterized by their
general sparsity for most species that are encountered, i.e., a
large number of zeros and small counts. This is due in part
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to small populations and that many species have low detec-
tion probabilities due to their secretive habits and are usually
detected only by their song or call.

As an illustration of the type of data that typically arise
from avian point counts, Table 1 contains point count data
from the American redstart (Setophaga ruticilla) for five loca-
tions sampled on 10 days. These data are described in more
detail in Section 5. The data of Table 1 are typical of those
collected in many ecological studies that involve counting or-
ganisms in that sampling is replicated in space and time, and
that the resulting counts are relatively sparse.

For data such as these, estimation of site-specific abun-
dance is not usually of direct interest. Data limitations aside,
there is little ecological motivation for interest in such small,
localized populations. However, an estimate of average abun-
dance over a number of locations within some region can form
the basis of assessment of population change over time. Also,
although covariate information is not available for the anal-
yses presented in Section 5, an understanding of the rela-
tionship between abundance and explicit descriptions of habi-
tat or landscape is an underlying theme in many ecological
investigations.

Abundance, or population size, is fundamental in the state-
ment of such objectives. However, most analyses rely on sim-
ple counts such as those given in Table 1 without explicit
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Table 1
Point count data for the American redstart
from five sample locations

Sampling occasion

1 2 3 5 6 7 8 9 10
Site 1 0 0 0 1 0 0 0 0 0 0
Site 2 0 0 0 0 0 0 0 0 0 0
Site 3 1 0 0 0 0 0 0 0 0 0
Site 4 0 1 1 3 1 2 2 1 0 1
Site 5 2 0 1 1 0 0 1 0 0 0

regard to the underlying detection process which generated
those counts. No effective approach for the estimation of
abundance from such data while formally accommodating the
detection process has been proposed. The focus of this article
is the development of such methods.

For closed populations, Haldane (1942) and Olkin, Petkau,
and Zidek (1981) have shown that it is possible to estimate
population size from temporally repeated counts of organisms
without regard to unique identification of individuals. That
is, given observed counts ny, na, ..., nr from a Binomial(N, p)
distribution, then a simple method of moments estimator
(MME), or the maximum likelihood estimator (MLE), may
be used. However, the resulting estimators can be very unsta-
ble when the data suggest that p is low, which led Olkin et al.
(1981) to consider refinements for these unstable situations.
Carroll and Lombard (1985) suggest an alternative estimator
(henceforth the “CL estimator”) which involves integrating
the nuisance parameter p from the likelihood under a beta
prior distribution with parameters ¢ and b which must be
fixed a priori. Conceivably, the CL estimator can be applied
to the type of data given in Table 1, either by application to
the data at each site, or by pooling the data across sites. While
such methods are interesting from a theoretical perspective,
and would seem ideally suited for avian point count data, they
have not been adopted in practice for several reasons which
are elaborated on in Section 3.

In this article I develop a model for estimating abundance
under a sampling design wherein temporally replicated counts
are collected at a number of locations in space. Under this
model, site-specific abundance is viewed as a random effect,
and the marginal likelihood of the counts is obtained by inte-
grating the binomial likelihood for the observed counts over
possible values of abundance for each site. This notion is thus
similar to other integrated likelihood approaches which ad-
dress estimating abundance (N) from replicated binomial data
(e.g., Carroll and Lombard, 1985) except that here the site-
specific abundance parameters are removed from the likelihood
by integration, instead of the detection probability parame-
ter (p). Importantly, the parameters of the prior distribution
are retained in the model and estimated from the data, thus
facilitating a variety of useful modeling extensions.

The proposed “N-mixture” model for estimating abun-
dance is described in Section 2. In Section 3, I briefly describe
the Carroll and Lombard (1985) estimator as it might be ap-
plied to spatially replicated data, and its potential limitations.
A simulation study to evaluate the proposed estimator, and a

109

comparison with the CL estimator, are presented in Section 4.
An application involving avian point count data is presented
in Section 5.

2. A Model for Spatially Replicated Counts

The study design considered here is that in which animals
are counted during ¢ = 1, 2,...,T sampling occasions and
at i = 1, 2,..., R locations (sites). Let n; be the number
of distinct individuals counted at location 4, in time ¢t. It is
assumed that the population being sampled is closed with
respect to mortality, recruitment, and movement so that the
counts may be viewed as i.i.d. binomial random variables,

Ny ~ Binomial(Nu p)7

where N; is the number of individuals available for sampling
(i.e., the population size at location ) and p is the detection
(or capture) probability. The likelihood for data from site i is

T

LN p[{na,- o) = [ | (

t=1

Ni nit (1 _ p)NVi—nit
Yty )
which is that considered by Olkin et al. (1981) and Carroll
and Lombard (1985).

Replicate samples at R locations in space yield R site-
specific likelihoods conditional on {Ny, Na,..., Ng}, and p.
The joint likelihood is

LN}, pl{nu}) = H {H (:Z)p”n (1- p)Ninu}A (2)

=1 t=1

This likelihood contains R + 1 unknowns, the R abun-
dance parameters, {N;:7 = 1, 2,..., R}, and a single detec-
tion probability parameter, p. Notwithstanding numerical dif-
ficulty in carrying out this maximizing, the general instabil-
ity problems motivating Olkin et al. (1981) and Carroll and
Lombard (1985) are important here because of the nature
of the data being considered (sparse counts) and because of
the large number of abundance parameters (the N;), some of
which may in fact be zero.

2.1 The Poisson Mixture Estimator

Carroll and Lombard’s (1985) solution to dealing with the
instability problem was to integrate the conditional likelihood
for p and N against a beta prior distribution for p. Clearly the
rationale for integrating p from (2) is tenuous because it does
little to simplify the problem, and the estimation of p is aided
by the addition of the R replicates regardless of the sparsity
of the actual counts.

The solution proposed here is to view the IV; as nuisance pa-
rameters, assumed to be independent random variables with
density f(NV; ), and then integrate (1) over this prior distri-
bution on abundance. One sensible choice of fis the Poisson
density,

e AN

N!

The Poisson assumption on N is appealing because it arises
under the assumption that the distribution of individuals
within some region is a homogeneous Poisson point process,
which is a natural (and common) model for the distribution
of organisms (see Section 2.2).

FIN;A) =
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Estimation can now focus on the integrated likelihood:

L(p. 0] {nis})
R
-1

where 6 is the (possibly vector-valued) parameter of f(IN;0)
(6 = X for the Poisson model) and Bin(n;; N;, p) is the bino-
mial likelihood.

It is a simple matter to maximize (3) numerically using
conventional methods. In practice, the summation over N; is
restricted to a finite, but large, bound, say K. The impact
of this decision can be evaluated by inspecting the likelihood
for various values of K. In the examples of Section 5, K =
200 was used, but the resulting MLEs did not change for K
greater than about 20.

o0

>

Ni=max¢ ng¢

T
[ Bin(rie; Niyp) ) F(Nis0) 5, (3)
t=1

2.2 Prior Distributions on N

The Poisson prior distribution on abundance is a natural
choice because it arises under the assumption that animals
are distributed randomly in space. While this is probably
best justified within a homogeneous landscape, potential de-
partures from randomness that arise as a result of landscape
heterogeneity could be explained explicitly (using covariates)
or by modifying the prior distribution to accommodate extra-
Poisson variation.

In this regard, a natural prior distribution for abundance
is the negative binomial, which results from a Gamma prior
distribution on site-specific intensity parameters \;. That is,

I'(N + a)

TN

f(Nsa,r) =
which is commonly parameterized in terms of the mean, p =
a(l — r)/r, or the Gamma parameters (a, ) with r =
B/(1 + B). In the analyses of Section 5, I use the (o, u)
parameterization of the negative binomial.

In practice, both models (and perhaps others) can be fit to
the data at hand and one could engage in various model selec-
tion exercises in an attempt to choose the most appropriate
one (see Section 5).

2.3 Estimating Abundance

Estimation based on (3) does not directly yield estimates of
abundance. Instead, maximization of (3) yields an estimate of
0, the parameter(s) of the prior distribution on N, and p. From
these, there are several approaches to generating estimates of
actual abundance.

First, in cases where site-specific abundance is not of direct
interest (which is probably in most situations), an estimate
of total abundance can be generated by area expansion. This
can proceed in several ways depending on the context. If sam-
ple units are of known area (e.g., a fixed-radius point count)
then it seems reasonable to estimate the total abundance by a
simple area expansion based on A (under the Poisson assump-
tion) since A is the density per sample unit. In cases where the
sample area is unknown, obtaining an estimate of total popu-
lation size is difficult. However, \ is still an estimate of mean
abundance per sample unit and it may thus serve as a useful
measure of abundance, accounting for detection probability.
Therefore, if there were R sample units then N = R is an es-
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timate of the total abundance of the sampled area. This would
be useful in studies involving temporal changes, impacts of
climate or weather, and other factors. Finally, if covariates
are thought to impact abundance (Section 2.4), then an es-
timate of total abundance can be constructed by summing
site-specific estimates of each \; assuming that the covariates
are known (i.e., mapped) over the region of interest.

Second, an estimate of 6 can be used in conjunction with
Bayes Theorem to yield an estimate of the conditional (on )
posterior distribution of any particular N;:

Pr(N =k|ni,ng,...,nr,0,p)

Pr(ni,ng,...,ny | N = k,p)Pr(N = k;0)

B ’ (4)
Z Pr(ny,mns,...,nr| N = k,p)Pr(N = k;0)
k=0

using estimates f and p in place of 8 and p. Thus, given the
observed vector of counts n;i, n,...,n;r, one may charac-
terize the posterior distribution of N;, which can be used to
make inferences about particular values of N;.

This approach to estimating N; can be described as a “plug-
in” empirical Bayes procedure; prior parameters are estimated
from the marginal likelihood and these estimates are then
plugged into the conditional (on ) posterior distribution. In
some instances, it may be prudent to adopt a fully Bayesian
perspective here and integrate over 6 to yield the (marginal)
posterior distribution of IV;. Although this is not much more
difficult, it would require suitable prior distributions depen-
dent on the choice of f(N; 0), and additional computation.
A fully Bayesian approach might be preferred in small sam-
ple situations to more properly characterize the uncertainty
in the estimates due to estimation of the prior parameters.

2.4 Modeling Covariate Effects

One of the principle benefits of the proposed modeling frame-
work is that the effect of factors which lead to spatial varia-
tion in abundance or detection probability can be estimated
directly. This is important because many field studies are not
interested in abundance per se, but rather how abundance
changes in response to habitat and other landscape charac-
teristics. In the context of the Poisson model, the obvious
modification is to adopt a log-linear model on the prior mean
according to:

10g()\i) = Z JUijﬁj,
j=1

where x;; 7 = 1, 2,...,r are the r measurable covariates for
site i.

A similar idea can be employed for modeling covariate ef-
fects on detection probability. For this, a linear model for
logit(p;;) seems reasonable.

3. Carroll and Lombard’s Estimator

Carroll and Lombard’s (1985) proposal was to integrate the
product binomial likelihood (1) over a prior distribution for
p, with fixed parameters. In principle, the CL estimator may
be applied to data from each site, (n;, n4,...,nir), in order
to estimate N;. For sparse data, this simple application of the
basic CL estimator often yields estimates on the boundary of
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the parameter space (the number of unique individuals ob-
served). Also, all-zero count histories pose obvious difficulty
(Table 1).

One solution in sparse data situations involving spatial
replication is to focus on estimating the total abundance
(across all sites) by simply summing the counts for each sam-
ple period across sites, yielding the totals: n, = Zil Nt
Then, the CL estimator can be applied to these pooled counts
to get an estimate of total abundance that is analogous to that
of Section 2.3 (that is, RA under the Poisson model). I will re-
fer to this as the “pooled CL estimator.” Use of this estimator
does generally yield stable solutions in most of the examples
given in Section 5. Note that, under the likelihood given by
(2), the summed counts (n ;) are not sufficient for estimating
total abundance. Thus, some information about model pa-
rameters is disregarded. In particular, summing counts across
sites ignores the structure implied by the two-dimensional ar-
ray (counts made at the same site are exchangeable when
conditioned on N;).

There are several important limitations with the inte-
grated likelihood approach suggested by Carroll and Lombard
(1985). First, that approach requires specification of the beta
parameters o and b, which is a difficult decision regardless
of whether or not the prior is ostensibly “noninformative.”
In practice, the detection probability of individual animals is
an important consideration and, intuitively, any estimator of
N will be sensitive to a priori structure imposed on p (this is
demonstrated in Section 5). Indeed, the CL estimator is biased
for any particular value of p, unless a judicious (or fortunate)
choice of a and b can be made. For many species of birds p
is more likely small (closer to 0) than large, but the CL esti-
mator requires prior decision making about what constitutes
reasonable values of p. Thus the problem of how to choose a
and b in a reasonably objective manner is fundamental and
cannot be avoided by apparently innocuous assumptions.

Second, although instability of the CL estimator in sparse
data problems can be overcome by pooling data across sites,
there is often fundamental interest in the spatial aspect of the
problem, such as modeling covariate effects on abundance.
Spatial aggregation of the data precludes any possibility of
investigating these effects.

Finally, in most field studies, information which influences
detectability is collected (e.g., observer, time of day, weather,
etc.). The CL approach does not provide a framework for
modeling covariates which influence p because of its removal
from the problem as a “nuisance” parameter. The implica-
tions of this are important. For example, estimating popula-
tion change across years, or regional differences, are common
goals in ecological studies. Often the data yielding informa-
tion about different (yearly, regional) values of N are collected
by different observers. Use of the CL estimator with the same
prior parameters is a de facto statement that all observers
are equal, or that all data are the same with respect to the
detection process.

4. Simulation Study

A simulation study was conducted to evaluate the proposed
N-mixture estimator in relation to the CL estimator. For these
simulations, R = (20, 50) sample sites were used with Poisson
site-specific abundances having A = (2, 5). Thus, the actual
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population sizes vary around 40, 100, 100, and 250 individuals
according to a Poisson(RA\) distribution. For these four sce-
narios, binomial data were generated with p = 0.25 and p =
0.50. To be concise, only simulations with T' = 5 are summa-
rized here. Results did not vary dramatically for most cases
when T was varied between 3 and 10.

The CL estimator with Beta(1,1) and the improper
Beta(0,0) prior distributions on p were considered. The three
estimators will be indicated by Npm, Ncwg, and Ncm where
NpOlS is the estimator R\ suggested in Section 2.3. Cover-
age of the nominal 95% asymptotic confidence interval was
computed as well as various summaries of the sampling dis-
tribution of each estimator. The models were fit using the nlm
procedure in the software package R (Thaka and Gentleman,
1996). The numerical solution appeared stable in all but a
small number of the R = 20, r = 0.25 cases, as diagnosed by
a poorly conditioned Hessian. The reason for this being that
in those cases, most of the observed counts were zero.

4.1 Simulation Results

Slmulatlon results are summarized in Table 2. Results for
Nclgo are omitted because they were similar to those for N
For a single case, (A = 2), the centered sampling distributions
for the three estimators are shown in Figure 1. Density plots
are of the difference N — N for the three estimators so that
zero on the a-axis represents no discrepancy between N and
the actual value.

These results clearly illustrate several points regarding the
various estimators. First, Npois is usually biased, owing to its
general skewness, but its median and mode are typically about
right. For example, in the p = 0.25 cases, its distribution is
strongly skewed but its mass is centered around zero. Con-
versely, there is a dramatic bias in N, in all cases regard-
less of which prior is used. Even when p = 0.50 N,; remains
negatively biased under either prior specification although its
mass is distributed more closely around zero than in the p =
0.25 case. Thus, while the CL estimator may be superior in
terms of variance in some instances (e.g., when p = 0.25), its
excessive bias is troublesome. This bias is reflected in the con-
fidence interval coverage; The coverage (for a 95% confidence
interval) for the CL estimators is very low. For the Poisson
mixture estimator the confidence interval coverage is much
closer to the nominal level, although conservative in the A =
2, p = 0.50 cases. Simulation results for p are omitted, but
in all cases examined, p was nearly unbiased and symmetric
about p.

5. Application to Avian Point Count Data

The data analyzed here consist of repeated point counts of
birds from a North American BBS (Robbins, Bystrak, and
Geissler, 1986) route. The BBS is a large-scale survey which
has been conducted since the 1960s, and consists of >4000
routes. Each route has 50 sample sites located one-half mile
apart. From each sample location, an observer records the
number of each species detected (by sight or song). Histori-
cally, BBS data are used as count indices, and to measure spa-
tial and temporal variation in relative abundance (e.g., trends;
Link and Sauer, 1997), because no rigorous methodological
framework for direct modeling of detection probability from
such data has been suggested. In 1991 a study was conducted
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Table 2
Summaries of the sampling distribution of Poisson mizture (Pois) and Carroll and Lombard (CL; 1985) estimators
of total abundance based on 10,000 simulated data sets. CL estimator uses beta(1,1) prior distribution for p. N is the average
abundance of the simulated realizations, q1, q3, and RMSE are the first and third quartiles and root mean-squared error
of the estimator. Coverage is the fraction of 95% “asymptotic” confidence intervals which contained the true value of N.

R A D N Estimator Q1 Mean Median qs Coverage RMSE
20 2 0.25 40 Pois 32.33 48.64 40.77 54.17 0.89 30.02
CL 14.64 19.82 18.51 23.55 0.18 21.43
20 2 0.50 40 Pois 35.14 40.87 40.15 45.70 0.99 5.43
CL 26.45 33.58 32.00 39.02 0.65 10.62
50 2 0.25 100 Pois 86.48 106.85 100.32 118.38 0.91 31.34
CL 37.28 48.93 45.96 57.23 0.17 53.30
50 2 0.50 100 Pois 92.13 100.63 99.77 108.45 0.99 7.60
CL 67.35 83.76 79.73 95.97 0.64 26.37
20 5 0.25 100 Pois 80.01 118.24 100.95 135.28 0.86 60.92
CL 37.51 49.04 46.30 57.72 0.19 53.48
20 5 0.50 100 Pois 89.90 102.64 99.75 112.21 0.93 16.39
CL 67.52 83.67 79.98 96.01 0.65 26.48
50 5 0.25 250 Pois 217.35 263.71 251.21 297.32 0.88 64.93
CL 94.59 122.42 115.28 142.22 0.18 132.95
50 5 0.50 250 Pois 233.41 252.16 249.61 268.59 0.93 22.34
CL 170.51 209.47 200.24 238.91 0.64 65.94
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Figure 1. Centered sampling distributions (N — N) for three estimators of abundance when A = 2; Poisson mixture estimator
(Poisson), Carroll and Lombard (1985) estimator using beta(1,1) (CL(1,1)) and beta(0,0) (CL(0,0)) prior distributions for p.
R is the number of spatial replicates, p is detection probability.



N-Mixture Models for Estimating Population Size

using BBS sampling protocol to examine variation in counts
within a breeding season (Link et al., 1994). The data consid-
ered here are counts of six species from this study: Amer-
ican redstart (Setophaga ruticilla), ovenbird (Seiurus auro-
capillus), gray catbird (Dumetella carolinensis), hermit thrush
(Catharus guttatus), brown thrasher (Tozostoma rufum), and
wood thrush (Hylocichla mustelina). Counts were carried out
on 10 days during June 1991 by the same observer. Due to
sampling protocol considerations, it is reasonable to assume
that the population is closed in the sense that breeding birds
have established territories so that observed birds are primar-
ily local breeders. Consequently, the assumption that n; for
sample location i = 1, 2,...,50 and occasion t =1, 2,...,10
are Binomial(N;, p) seems plausible.

The data from the first five stops along the route contain-
ing 50 stops for the redstart were given in Table 1. These
data are representative of that for the other species in the
sense that they are sparse; counts are low, and there are many
ZEros.

5.1 Carroll and Lombard Estimation

Due to the sparse nature of the data (in particular, the all-
zero count histories), the CL estimator does not perform well
when applied to site-specific data, as one might expect. The
majority of site-specific estimates of N were on the boundary
(maximum number of unique individuals observed). However,
it is possible to make progress using the CL estimator by
pooling the data over the 50 stops as described in Section 3.
In this way, an estimate of “total abundance” can be obtained.
This was done for each of the six species and the CL estimator
was used to estimate N using various values of a and b. The
results are presented in Table 3.

These results illustrate two important problems. First, in
those instances where the fewest number of individuals were
seen (hermit thrush and thrasher), the CL estimator falls on
the boundary of the parameter space unless substantial a pri-
ori mass on p is given to small values. Boundary estimates
are suggestive of p = 1 which is highly suspicious given the
secretive nature of these two species in particular. Sensitivity
of N to the choice of prior parameters is also evident. The
estimates behave roughly in accordance to the mean value of
the imposed prior distribution and vary considerably (in rel-
ative terms) for even these minor changes in a and b. Expe-
rience suggests that many species of birds have low detection
probabilities, which would favor use of something other than
a = b = 1. But precisely which values of a and b should one
choose? There is simply no basis for choosing an estimate of
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Table 4
Results of fitting Poisson and negative binomial mizture
models to count data on siz species of birds collected
on 10 sampling occasions and at 50 spatial locations
along a BBS route

Poisson Negative binomial
Species N op =20 4 p =20 AlU
Redstart 2.81 0.108 679.61 7.21 0.042 677.49 2.1
Ovenbird 2.12 0.317 900.70 2.63 0.254 893.91 6.8
Catbird 0.63 0.158 299.81 0.84 0.118 298.66 1.2
Hermit thrush 0.61 0.075 175.77 7.06 0.007 174.63 1.1
Thrasher 0.09 0.228 6842 0.12 0.169 65.18 3.2
Wood thrush  1.76 0.262 762.13 1.90 0.243 761.48 0.7

N without some information regarding detection probability.
Thus, use of the CL estimator substitutes one problem (poor
behavior of the MLE of N when the detection probability is
low) for another problem—choosing a and b.

5.2 Estimation Using N-Mixture Models

Results of fitting the Poisson and negative binomial mixture
to the bird count data are summarized in Table 4. Because
the Poisson model represents a special case of the negative bi-
nomial model, it must yield a better fit (the minimized value
of minus twice the log likelihood for both models is shown
in Table 4). Evaluation of the utility of the additional nega-
tive binomial parameter may be carried out by comparing the
log-likelihood difference to a x? distribution on one degree-
of-freedom (All in Table 4). We see only a single instance
(ovenbird) where the negative binomial is favored. In this in-
stance, the results are not substantially different; The Poisson
mean is 2.12, whereas the estimated negative binomial mean
is slightly larger at 2.63. For some of the other cases (notably
the redstart and hermit thrush), the negative binomial mean
is unrealistically large, suggesting very high local abundance.
However, in these instances, the overdispersed negative bino-
mial model is not favored.

To generate abundance estimates analogous to those of
Table 3 computed using the pooled Caroll and Lombard es-
timator, I used the “area expansion” estimator described
in Section 2.3. Because data were collected at 50 sites and
the model fits provide estimates of the mean number per
site, an estimate of the total abundance is N =50\ (un-
der the Poisson model). An estimate of the standard error

Table 3
Total abundance estimates for siz bird species using different Carroll and Lombard estimators. maz n; is the
mazimum count of birds over the 10 sample periods. B(-,-) indicates the beta prior used in computing the estimate.

Species maxm. B(0,0) B(1,1) B(1,2) B(2,1) B(1,3) B(1,4)
Redstart 26 161.4 103.0 109.46 78.61 115.97 122.60
Ovenbird 41 51.8 53.5 58.62 51.49 65.78 75.24
Catbird 9 24.2 18.8 20.65 15.50 22.62 24.68
Hermit thrush 4 4.0 4.0 4.27 4.00 4.90 5.69
Thrasher 2 2.0 2.0 2.00 2.00 2.14 2.51
Wood thrush 30 64.4 58.9 66.03 51.67 74.02 82.75
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is SE(N) = 50SE()). Using the asymptotic variance (the in-
verse of the Hessian evaluated at the MLEs) for M in each case,
the total abundance estimates for the six species (and stan-
dard error) are Nyq = 140.5(26.4), Noyen = 106.0(9.2), Neo =
31.5(5.7), Niom = 30.5(9.5), Nipa = 4.5(1.6), and Nygoq =
88.0(8.9). All of these estimates are considerably greater than
those based on Nclll: consistent with the apparent detection
probabilities tending to be <0.5. As expected, as the beta
prior parameters are chosen to favor lower values of p, the
estimates become more consistent with those based on the
Poisson mixture model.

6. Discussion

Sparse data from spatially replicated count surveys can be
utilized to effectively estimate population sizes while properly
accounting for the detection process when local (site-specific)
abundance, IN;, can be modeled as exchangeable random vari-
ables. Under this approach, the characteristics of the latent
distribution of N; can be estimated from the integrated like-
lihood. Because the site-specific N; are regarded as nuisance
parameters and integrated from the likelihood, the proposed
method does not yield direct estimates of abundance. Instead,
estimates of quantities which are relevant to the distribution
of abundances across sites (i.e., the parameters of the prior
distribution of N;), such as average abundance in the case of
the Poisson prior, may be estimated. Although this is proba-
bly sufficient for many objectives (for example, in evaluating
temporal change or geographic differences), it is possible to
obtain an estimate of total abundance (e.g., area expansion),
or even to estimate site-specific abundance from the estimated
posterior distribution of N;.

Imposing a prior distribution on abundance should not be
perceived as a drawback of the proposed approach as there is
flexibility in choice of prior distribution and decision making
in this regard can be viewed as a model selection exercise.
I considered the Poisson and negative binomial here because
they are sensible within the context of the distribution of
organisms in space, though other prior distributions may be
considered.

The Carroll and Lombard (1985) approach requires specifi-
cation of a prior distribution on detection probability, where
prior parameters are not estimated from the data. One im-
portant disadvantage of this is that the estimator is sensitive
to choice of prior parameters (e.g., see Table 3). Essentially,
that approach resolves one problem (sensitivity to data) while
inducing another (sensitivity to prior) which may be equally
problematic. Another consequence of having fixed prior pa-
rameters for detection probability is that the estimator is
badly biased. Although bias should not be the only consid-
eration in evaluating the merits of a procedure, extreme bias
would seem to mitigate the value of any gain in precision that
biased estimators might yield.

6.1 Discussion of Simulation Results

Results of the simulation study suggest that the proposed
N-mixture estimator performs well under a range of situa-
tions that are relevant to, for example, point counts of birds.
The situations evaluated constitute what would generally be
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viewed as low to moderate abundance: 20 or 50 sites with
an average of two or five individuals. Although the RMSE of
the estimator was not always better than the CL estimators
considered, its sampling distribution is more or less centered
properly and its performance in terms of RMSE and coverage
is compelling when viewed in light of the dramatic bias and
poor coverage of the CL estimators. Interestingly, the bias of
the CL estimator was substantial even when the prior used
in construction of the CL estimator was consistent with the
true value of p. Simulations (not reported here) indicate that
the bias does diminish to tolerable levels as T increases, or as
abundance increases.

The simulation studies could be criticized on the grounds
that the data construction (i.e., spatial replication) favors
the Poisson mixture model for estimating abundance as that
model explicitly acknowledges the spatial replication. This is
undeniable; the simulations were constructed to evaluate the
performance of the Poisson mixture model in such problems.
The pooled version of the CL estimator was used because
the CL estimator cannot be applied effectively to site-specific
sparse data of the type considered in this article. I attempted
to resolve this issue by developing a modified CL estimator
that properly accounts for the spatial replication. This esti-
mator is that resulting from integration of both p and N from
the conditional likelihood, while still retaining the fixed pa-
rameters in the prior distribution on p, but estimating the
prior parameters of N. Generally, its performance was inter-
mediate between the pooled CL estimator and the Poisson
mixture estimator obtained by only mixing over the prior on
N, but bias problems were still persistent as a consequence of
retaining the fixed beta prior parameters.

6.2 The Application

Estimates of abundance were computed for avian point count
data on six species of birds. These data typify those col-
lected in many studies of avian biology and by many mon-
itoring programs. Estimates of total abundance for the six
species were sensitive to the choice of prior parameters in the
CL estimator. This induces some arbitrariness in the choice
of which estimate of abundance should be used and would
likely be an important consideration in many analyses. For the
N-mixture models, the negative binomial model was favored
over the Poisson for only a single species (based on log likeli-
hood). For that species, the estimates of mean abundance dif-
fered only slightly. However, for two of the remaining species
the estimated mean abundance was substantially different un-
der the two models. For example, the estimated mean abun-
dance for the Hermit thrush was 0.61 under the Poisson model
and 7.06 under the negative binomial, suggesting very high
abundance at some sites. Thus, even though Poisson was fa-
vored, the implausibility of such high levels of abundance at
the spatial scale of a point count suggests the possibility that
neither model provides an adequate description of the data.
For example, it could be the lurking covariates are inducing
some heterogeneity in the data, but in a manner that is in-
consistent with that implied by the negative binomial model.
Hermit thrush is a forest bird, and so forest coverage at the
stop level would be an interesting covariate to consider, if it
could be obtained.
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RESUME

La réplication spatiale est un theme usuel dans les recense-
ments animaux. De telles enquétes fournissent souvent des
données de comptage éparses, a partir desquelles il est dif-
ficile d’estimer la taille de la population, bien que prenant
en compte formellement la probabilité de détection. Dans
ce papier, je décris une classe de modeéles (modeles de N-
mélange) qui vise & estimer la taille de la population a
partir de telles données. L’idée centrale est de considérer
les tailles de population par site, N, comme des variables
aléatoires indépendantes distribuées selon une certaine loi de
mélange (par exemple de Poisson). Les parametres a pri-
ori sont estimés a partir de la vraisemblance marginale des
données, apres intégration sur la distribution a priori de N.
Carroll et Lombard (1985) ont proposé une classe
d’estimateurs basés sur un mélange par une distribution
a priori de la probabilité de détection. Leur estimation
s’applique dans un cadre limité, et est sensible aux valeurs
des parameétres fixés en a priori. La réplication spatiale four-
nit une information additionnelle concernant les parametres
de la distribution a priori de N, exploitée par les modeles
de N-mélange, et qui conduit & des estimations raisonnables
de I’'abondance pour des données éparses. Une étude de sim-
ulation montre Pavantage des caractéristiques (biais, couver-
ture de l'intervalle de confiance) de 'estimateur du N-mélange
sur l'estimateur de Carroll et Lombard. Les deux estima-
teurs sont appliqués a des données de comptage pour six
especes d’oiseaux, illustrant la sensibilité au choix de I’a priori
sur p, avec en conséquence des estimations substantiellement
différentes pour ’abondance.
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