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Chapter 3: Simple Random Sampling and Systematic 
Sampling 
 
Simple random sampling and systematic sampling provide the foundation for almost all of the 
more complex sampling designs that are based on probability sampling.  They are also usually 
the easiest designs to implement.  These two designs highlight a trade-off inherent in all sampling 
designs:  do we select sample units at random to minimize the risk of introducing biases into the 
sample or do we select sample units systematically to ensure that sample units are well-
distributed throughout the population?   
 
Both designs involve selecting n sample units from the N units in the population and can be 
implemented with or without replacement.   

Simple Random Sampling 

When the population of interest is relatively homogeneous then simple random sampling works 
well, which means it provides estimates that are unbiased and have high precision.  When little is 
known about a population in advance, such as in a pilot study, simple random sampling is a 
common design choice.   
 
Advantages:   
 

• Easy to implement 
• Requires little advance knowledge about the target population 

 
Disadvantages:   
 

• Imprecise relative to other designs if the population is heterogeneous 
• More expensive to implement than other designs if entities are clumped and the cost to 

travel among units is appreciable  
 
How it is implemented:   
 

• Select n sample units at random from N available in the population 
 
All units within the population must have the same probability of being selected, therefore each 
and every sample of size n drawn from the population has an equal chance of being selected.   
 
There are many strategies available for selecting a 
random sample.  For large finite populations (i.e., 
those where every potential sampling unit can be 
identified in advance), this can involve generating 
pseudorandom numbers with a computer.  For small 
finite populations it might involve using a table of 
random numbers or even writing a unique identifier for 
every sample unit in the population on a scrap of 
paper, placing those numbers in a jar, shaking it, then 
selecting n scraps of paper from the jar blindly.  The 
approach used for selecting the sample matters little 
provided there are no constraints on how the sample 
units are selected and all units have an equal chance 
of being selected.   
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Estimating the Population Mean 

The population mean (μ) is the true average number of entities per sample unit and is estimated 
with the sample mean ( μ̂  or y ) which has an unbiased estimator:   
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where yi is the value from each unit in the sample and n is the number of units in the sample.   
 
The population variance (σ2) is estimated with the sample variance (s2) which has an unbiased 
estimator: 
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Variance of the estimate μ̂  is: 
n
s

N
nN)μ(

2
⎟
⎠
⎞

⎜
⎝
⎛ −
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The standard error of the estimate is the square root of variance of the estimate, which as always, 
is the standard deviation of the sampling distribution of the estimate.  Standard error is a useful 
gauge of how precisely a parameter has been estimated as is a function of the variation inherent 
in the population (σ2) and the size of the sample (n).  
 

Standard error of μ̂  is: 
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nN  is the finite population correction factor which adjusts variance of the 

estimator (not variance of the population which does not change with n) to reflect the amount of 
information that is known about the population through the sample.  Simply, as the amount of 
information we know about the population through sampling increases, the remaining uncertainty 
decreases.  Therefore, the correction factor reflects the proportion of the population that remains 
unknown.  Consequently, as the number of sampling units measured (n) approaches the total 
number of sampling units in the population 
(N), the finite population correction factor 
approaches zero, so the amount of 
uncertainty in the estimate also 
approaches zero.  
 
When the sample size n is small relative to 
the population size N, the fraction of the 
population being sampled n/N also is 
small, therefore the correction factor has 
little effect on the variance of the estimator 
(Fig. 2 - FPC.xls). If the finite population 
correction factor is ignored, which is what 
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we have to do when N is unknown, the effect on the variance of the estimator is slight when N is 
large.  When N is small, however, the variance of the estimator can be overestimated 
appreciably.   
 
Example.  (to be added) 

Estimating the Population Total 

Like the number of entities per sample unit, the total number of entities in the entire population is 
another attribute estimated commonly.  Unlike the population mean, however, estimating the 
population total requires that we know the number of sampling units in a population, N.   
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where N is the total number of sample units in a population, n is the number of units in the 
sample, and yi is the value measured from each sample unit.   
 
In studies of wildlife populations, the total number of entities in a population is often referred to as 
“abundance” and is traditionally represented with the symbol N.  Consequently, there is real 
potential for confusing the number of entities in the population with the number of sampling units 
in the sampling frame.  Therefore, in the context of sampling theory, we’ll use τ̂  to represent the 
population total and N to represent the number of sampling units in a population.  Later, when 
addressing wildlife populations specifically, we’ll use N to represent abundance to remain 
consistent with the literature in that field.   
 
Because the estimator τ̂  is simply the number of sample units in the population N times the 
mean number of entities per sample unit, μ̂ , the variance of the estimate τ̂  reflects both the 
number of units in the sampling universe N and the variance associated with μ̂ .  An unbiased 
estimate for the variance of the estimate τ̂  is:  
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where s2 is the estimated population variance.   
 
Example.  (to be added) 

Estimating a Population Proportion 

If you are interested in the composition of a population, you could use a simple random sample to 
estimate the proportion of the population p that is composed of elements with a particular trait, 
such as the proportion of plants that flower in a given year, the proportion of juvenile animals 
captured, the proportion of females in estrus, and so on.  We will consider only classifications that 
are dichotomous, meaning that an element in the population either has the trait of interest 
(flowering) or it does not (not flowering); extending this idea to more complex classifications is 
straightforward.   
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In the case of simple random sampling, the population proportion follows the mean exactly; that 
is, p = μ.  If this idea is new to you, convince yourself by working through an example.  Say we 
generate a sample of size 10, where 4 entities have a value of 1 and 6 entities have a value of 0 
(e.g., 1 = presence of a trait, 0 = absence of a trait).  The proportion of entities in the sample with 
the trait is 4/10 or 0.40 which is also equal to the sample mean, which = 0.40 
([1+1+1+1+0+0+0+0+0+0]/10 = 4/10).  Cosmic.   
 
It follows that the population proportion (p) is estimated with the sample proportion ( p̂ ) which has 
an unbiased estimator:   
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Because we are dealing with dichotomous proportions (sample unit does or does not have the 
trait), the population variance σ2 is computed based on variance for a binomial which is the 
proportion of the population with the trait (p) times the proportion that does not have that trait (1 – 
p) or p(1 – p).  The estimate of the population variance s2 is: )ˆ1(ˆ pp − .   
 

Variance of the estimate p̂  is: 
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Standard error of p̂  is: 
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Example.  (to be added) 
 

Determining Sample Sizes 

How many sample units should we measure from the population so that we have confidence that 
parameters have been estimated adequately?   
 
Determining how many sample units (n) to measure requires that we establish the degree of 
precision that we require for the estimate we wish to generate; we denote a quantity B, the 
desired bound of the error of estimation, which we define as the half-width of the confidence 
interval we want to result around the estimate we will generate from the proposed sampling effort.  
 
To establish the number of sample units to measure to estimate the population mean μ at a 
desired level of precision B with simple random sampling, we set Z × SE( y ) (the formula for a 
confidence interval) equal to B and solve this expression for n.  We use Z to denote the upper α/2 
point of the standard normal distribution for simplicity (although we could use the Student’s t 
distribution), where α is the same value we used to establish the width of a confidence interval, 
the rate at which we are willing to tolerate Type I errors.  
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If we anticipate n to be small relative to N, we can ignore the population correction factor and use 
only the formula for n0 to gauge sample size.   
 
Example:  Estimate the average amount of money μ for a hospital’s accounts receivable.  Note, 
however, that no prior information exists with which to estimate population variance σ2 but we 
know that most receivables lie within a range of about $100 and there are N = 1000 accounts.  
How many samples are needed to estimate μ with a bound on the error of estimation B = $3 with 
95% confidence (α = 0.05, Z = 1.96) using simple random sampling?   
 
Although it is ideal to have data with which to estimate σ2, the range is often approximately equal 
to 4 σ, so one-fourth of the range might be used as an approximate value of σ. 
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Substituting into the formula above: 
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Therefore, about 218 samples are needed to estimate μ with a bound on the error of estimation 
B = $3. 
 
To establish the number of sample units to measure to estimate the population total τ at a desired 

level of precision B with simple random sampling, we set ⎟
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And as with establishing n for the population mean, if N is large relative to n, the population 
correction factor can be ignored, and the formula for sample size reduced to n0 
 
Example: What sample size is necessary to estimate the caribou population we examined to 
within d = 2000 animals of the true total with 90% confidence (α = 0.10)?   
 
Using s2 = 919 from earlier and Z = 1.645, which is the upper α = 0.10/2 = 0.05 point of the 
normal distribution: 
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To adjust for the size of the finite population: 
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Systematic Sampling 

Occasionally, selecting sample units at random can introduce logistical challenges that preclude 
collecting data efficiently.  If we suspect that the chances of introducing a bias are low or if ideal 
dispersion of sample units throughout the population is a higher priority than minimizing potential 
biases, then it might be most appropriate to choose samples non-randomly.  As in simple random 
sampling, systematic sampling is a type of probability sampling where each element in the 
population has a known and equal probability of being selected.  The probabilistic framework is 
maintained through selection of one or more random starting points.  Although sometimes more 
convenient, systematic sampling does provide less protection against introducing biases in the 
sample compared to simple random sampling.   
 
Estimators for systematic sampling and simple random sampling are identical; only the method of 
sample selection differs.  Therefore, systematic sampling is used most often to simplify the 
process of selecting a sample or to ensure ideal dispersion of sample units throughout the 
population.   
 
Advantages:   
 

• Easy to implement  
• Maximum dispersion of sample units throughout the population 
• Requires minimum knowledge of the population 

 
Disadvantages:   
 

• Less protection from possible biases 
• Can be imprecise and inefficient relative to other designs if the population being sampled 

is heterogeneous 
 
How it is implemented:   
 

• Choose a starting point at random  
• Select samples at uniform intervals thereafter 

1-in-k systematic sample 

Most commonly, a systematic sample is obtained by 
randomly selecting 1 unit from the first k units in the 
population and every kth element thereafter.  This 
approach is called a 1-in-k systematic sample with a 
random start.  To choose k so than a sample of 
appropriate size is selected, calculate: 
 
k = Number of units in population / Number of sample 
units required 
 
For example, if we plan to choose 40 plots from a field 
of 400 plots, k = 400/40 = 10, so this design would be 
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a 1-in-10 systematic sample.  The example in the figure is a 1-in-8 sample drawn from a 
population of N = 300; this yields n = 28.  Note that the sample size drawn will vary and depends 
on the location of the first unit drawn.   

Estimating the Population Mean 

The population mean (μ) is estimated with:   
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The population variance (σ2) is estimated with:  
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Variance of the estimate μ̂  is: 
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Estimating the Population Total 

The population total τ  is estimated with: ∑
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Variance of the estimate τ̂  is: ⎟
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Standard error of τ̂  is: ⎟
⎠
⎞

⎜
⎝
⎛ −
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

N
nN

n
sN

2
2)ˆr(âv τ  

Estimating the Population Proportion 

The population proportion (p) is estimated with the sample proportion ( p̂ ) which has an unbiased 
estimator:   
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Because we are estimating a dichotomous proportion, the population variance σ2 is again 
computed with a binomial which is the proportion of the population with the trait (p) times the 
proportion without that trait (1 – p) or p(1 – p).  The estimate of the population variance s2 is: 
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Variance of the estimate p̂  is: 
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Examples.  (to be added) 
 


