

Two arguments have been raised that allow analysts to ignore risk in the valuation of public investment project values, and to calculate net benefits on the basis of expected values.

## Risk Pooling

Assume there are n investment projects in the economy. For each project, the share of total investment cost is  $\underline{1}\,$  , and the net benefit is  $Y_i.$ 

The variance and covariance for the net benefits of project i are as follows:

var 
$$(Y_i)$$
 =  $E[Y_i - E(Y_i)]^2$   
cov  $(Y_i Y_j) = E[(Y_i - E(Y_i)][(Y_j - E(Y_j)]$   
= 0

The variance of net benefits for all projects in the economy is as follows:

$$\operatorname{var}\left(\sum_{i} Y_{i}\right) = E\left[\sum_{i} \frac{1}{n} Y_{i} - \sum_{i} \frac{1}{n} E(Y_{i})\right]^{2}$$

$$= \sum_{i} \frac{1}{n^{2}} \left[Y_{i} - E(Y_{i})\right]^{2} + 2 \sum_{i} \sum_{j} \frac{1}{n^{2}} \operatorname{cov} Y_{i} Y_{j}$$

$$= \frac{1}{n^{2}} n \left(\operatorname{var} Y_{i}\right) + \left(2\right) \left(\frac{1}{n^{2}}\right) \left(0\right)$$

$$= \frac{1}{n} \operatorname{var} Y_{i}$$
As  $n \to \infty$ ,  $\operatorname{var}\left(\sum_{i} Y_{i}\right) \to 0$ .

The law of large numbers that allows the direct cost of risk from a project to be ignored. Unexpectedly low net benefits in one project will be offset by unexpectedly high net benefits in another project.

## Risk Spreading

In this case, the net benefits of project (Y<sub>i</sub>) are assumed to be shared among m individuals.

Recall from an earlier handout that the welfare cost of risk (k) can be written as follows:

$$k = -\frac{1}{2} \frac{u''}{u'} \quad var \left(\frac{Y_i}{m}\right),$$

where  $\frac{u''}{u'}$  = absolute risk aversion coefficient

and  $\frac{Y_i}{m}$  = individual's share of project benefits.

The var  $\left(\frac{Y_i}{m}\right)$  can be rewritten:

var 
$$\left(\frac{Y_i}{m}\right) = E\left(\frac{Y_i}{m} - \frac{E(Y_i)}{m}\right)^2 = \frac{var Y_i}{m^2}$$

Substituting this expression in the formula for the welfare cost of risk:

$$k = -\frac{1}{2} \frac{u''}{u'} \frac{\text{var } Y_i}{m^2}$$

As the population of the economy increases (  $m \to \infty$  ),  $k \to 0$ . This is the Arrow-Lind Theorem. If risk is shared by a large number of persons, the risk of a project is negligible and can be ignored in the social perspective.