Profit Maximization. Let p = output price, q(x) = production function, x, =
input i, and w, = price of input i.

Optimization Problem
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First-Order Conditions
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Input Demands

By implicit function theorem, first-order conditions (2) can be rearranged so
that an input demand function is generated:

xi = xi(wi p) (3)
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Producer Surplus (PS)

PS = Revenues - Variable Costs

PS = pq(xi[p,w],..., xn[p,w]) - 2 wi xi(p, w)
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This measure is the area behind the supply curve, and between the two prices.
No path-dependence problems arise in the calculation of PS, because the cross-
partials of the supply function, 9 q ( X j ) /0 P; are equal (by Young's
Theorem).




