The Measurement of Producer Surplus

Profit Maximization. Let p = output price, $q(x_i) = production function$, $x_i = input i$, and $w_i = price$ of input i.

Optimization Problem

$$\max \quad \pi = p \, q \left(x_i \right) - \sum_i w_i x_i - \text{Fixed Cost}$$
 (1)

First-Order Conditions

$$\frac{\partial \pi}{\partial x_i} = p \frac{\partial q}{\partial x_i} - w_i = 0 \tag{2}$$

Second-Order Conditions

$$D = \begin{bmatrix} \frac{\partial^2 \pi}{\partial x_1^2} & \cdots & \frac{\partial^2 \pi}{\partial x_1 \partial x_n} \\ \vdots & & \vdots \\ \frac{\partial^2 \pi}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 \pi}{\partial x_n^2} \end{bmatrix}$$

Principal minors, D_{ij} , have sign $(-1)^{i+j}$, if solution is a maximum.

<u>Input Demands</u>

By implicit function theorem, first-order conditions (2) can be rearranged so that an input demand function is generated:

$$x_i = x_i^* (w_i, p)$$
 (3)

<u>Producer Surplus (PS)</u>

Since $p \frac{\partial q}{\partial x_i} = w_i$,

PS = Revenues - Variable Costs

PS =
$$p q(x_i[p, w], ..., x_n[p, w]) - \sum_i w_i x_i(p, w)$$

$$\frac{\partial PS}{\partial p} = q(x_i[p, w]) + p\sum_i \frac{\partial q}{\partial x_i} \frac{\partial x_i}{\partial p} - \sum_i w_i \frac{\partial x_i}{\partial p}$$

$$= q() + \left(p \sum_{i} \left[\frac{\partial q}{\partial x_{i}} - w_{i} \right] \right) \frac{\partial x_{i}}{\partial p}$$

$$\frac{\partial PS}{\partial P} = q(x_i[p, w], x_n[p, w])$$

 $\Delta PS = \int_{p}^{p} q (x_i [p, w]) dp$

This measure is the area behind the supply curve, and between the two prices. No path-dependence problems arise in the calculation of PS, because the cross-partials of the supply function, $\frac{\partial q}{\partial p_j}$ are equal (by Young's Theorem).

(by first-order conditions)