The Measurement of Consumer Surplus.
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Uncompensated demand functions

(1) and (2) represent (n + 1) equations in
(n + 1) unknowns (the x 's and A). Implicit
function theorem ( applicable because (3)
is satisfied) allows the representation of
money income held constant demand
curves:
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Optima - Second-order conditions
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Compensated demand functions

(1) and (2) represent (n + 1) equations in
(n + 1) unknowns (the x 's and ). Im-
plicit function theorem (applicable be-
cause (3') is satisfied) allows the repre-

sentation of utility held constant demand

curves:
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INDIRECT UTILITY FUNCTION

Substitute (4) into the optimization
problem, so that
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V () is the indirect utility function.
Uncompensated demand functions
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The above expression can be further

simplified by using the budget constraint.
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Substitute this expression into the ex-

pression for 3y /op; to get
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EXPENDITURE FUNCTION

Substitute (4') into the optimization
problem, so that
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e ( ) is the expenditure function.
Compensated demand functions

ox ¢

ae c J
— =X+ [—
op; ! ‘];p, ap; (

ul
N

By the utility constraint,
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Substituting into (6)
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By the budget constraint,
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Substitute (6} into (5):
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(7) gives another representation of the
uncompensated demand functions; they
reflect price and income effects on the
indirect utility function.

Measuring welfare change

The measure of welfare change is ob-
tained bv differentiation of the indirect
utility function:
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Substituting the results of equations (5)
and (6),
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For a discrete change in price,
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7' are again the compensated demand
functions; they reflect only price effects
on the expenditure function. These de-
mand curves are different from the un-
compensated demand curves, which
reflect price and income effects.

Measuring welfare change

The measure of welfare change is ob-
tained by differentiating the expenditure
function:
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This expression can be evaluated only by
choosing a particular value of U, so that
du = 0.

If we choose initial utility, we associate
welfare change with the compensating
variation (CV). CV is the expenditure
change needed to maintain initial utility
at the new prices
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X. is a function of p and m, and both are
changing simultaneously. Unless

for all i and j. the value of this integral is
not unique. Instead, it depends on the
sequence of price changes. This problem
is known as path dependence.
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This measure is path-independent.
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