The Measurement of Consumer Surplus.

PRIMAL PROBLEM

DUAL PROBLEM

EXPENDITURE MINIMIZATION

UTILITY MAXIMIZATION

Optimization Problem

$$\max \quad U(x_i, ..., x_n)$$
s.t.
$$\sum_i p_i x_i = m$$

Lagrangean

$$L = U(x_i, ..., x_n) + \lambda \left(m - \sum_i p_i x_i\right)$$

Optima - First-order conditions

$$\frac{\partial L}{\partial x_i} = \frac{\partial U}{\partial x_i} - \lambda \ p_i = 0$$
 (1)

$$\frac{\partial L}{\partial \lambda} = m - \sum p_i x_i = 0 \qquad (2)$$

Optima - Second-order conditions

$$L_{ij} = \frac{\partial^{2}L}{\partial x_{i}\partial x_{j}} \qquad L_{i\lambda} = \frac{\partial^{2}L}{\partial x_{i}\partial \lambda}$$

$$\begin{vmatrix} L_{11} & L_{12} & \dots & L_{1n} & L_{1\lambda} \\ L_{21} & L_{22} & \dots & L_{2n} & L_{2\lambda} \\ \vdots & \vdots & \ddots & \vdots \\ L_{n1} & L_{n2} & \dots & L_{nn} & L_{n\lambda} \\ L_{\lambda 1} & L_{\lambda 2} & \dots & L_{\lambda n} & L_{\lambda \lambda} \end{vmatrix}$$

$$(3)$$

Uncompensated demand functions

(1) and (2) represent (n + 1) equations in (n + 1) unknowns (the x 's and λ). Implicit function theorem (applicable because (3) is satisfied) allows the representation of money income held constant demand curves:

$$x_i = x_i^* \quad (p, m)$$

$$\lambda = \lambda^* \quad (p, m) \quad (4)$$

_

Optimization Problem

min
$$\sum_{i} p_{i} x_{i}$$

s.t. $U(x_{1}, ..., x_{n}) = \overline{U}$

Lagrangean

$$L = \sum_{i} p_{i} x_{i} + \mu \left(\overline{U} - U[x_{1}, \dots x_{n}] \right)$$

Optima - First-order conditions

$$\frac{\partial L}{\partial x_{i}} = p_{i} - \mu \frac{\partial U}{\partial x_{i}} = 0 \qquad (1')$$

$$\frac{\partial L}{\partial \mu} = \overline{U} - U(x_{i}, \dots x_{n}) = 0 \qquad (2')$$

Optima - Second-order conditions

Compensated demand functions

(1) and (2) represent (n + 1) equations in (n + 1) unknowns (the x_i 's and μ). Implicit function theorem (applicable because (3') is satisfied) allows the representation of utility held constant demand curves:

$$x_{i} = x_{i}^{c}(p, u)$$

$$\mu = \mu^{c}(p, u) \qquad (4')$$

PRIMAL PROBLEM

INDIRECT UTILITY FUNCTION

Substitute (4) into the optimization problem, so that

$$V(p_i, m) = U(x_1[p_i, m], ..., x_n[p_i, m])$$

s.t.
$$\sum_{i} p_i x_i = m$$

V () is the indirect utility function.

Uncompensated demand functions

$$\frac{\partial V}{\partial p_{i}} = \sum_{j} \frac{\partial U}{\partial x_{j}} \frac{\partial x_{j}}{\partial p_{i}}$$

$$= \sum_{j} (\lambda p_{j}) \frac{\partial x_{j}}{\partial p_{i}}$$
 (by first-order condition)

$$= \lambda \sum_{j} p_{j} \frac{\partial x_{j}}{\partial p_{i}}$$

The above expression can be further simplified by using the budget constraint.

$$\frac{\partial}{\partial p_i} \left[\sum_i p_i x_i \right] = \frac{\partial m}{\partial p_i} = 0$$

$$x_i + \sum_j p_j \frac{\partial x_j}{\partial p_i} = 0$$

$$\sum_{i} p_{i} \frac{\partial x_{i}}{\partial p_{i}} = -x_{i}$$

Substitute this expression into the expression for $\partial V/\partial p_i$ to get

$$\frac{\partial V}{\partial p_i} = -\lambda x_i \qquad (5)$$

What is the value of λ ?

$$\frac{\partial V}{\partial m} = \sum_{i} \frac{\partial U}{\partial x_{i}} \frac{\partial x_{i}}{\partial m}$$

$$\frac{\partial V}{\partial m} = \lambda \sum_{i} p_{i} \frac{\partial x_{i}}{\partial m}$$

DUAL PROBLEM

EXPENDITURE FUNCTION

Substitute (4') into the optimization problem, so that

$$e(p_i, u) = \sum_i p_i x_i^c(p_i, u)$$

s.t.
$$U(x_i) = \overline{U}$$

e () is the expenditure function. <u>Compensated demand functions</u>

$$\frac{\partial e}{\partial p_i} = x_i^c + \sum_j p_j \frac{\partial x_j^c}{\partial p_i}$$
 (5')

By the utility constraint.

$$\frac{\partial}{\partial p_{i}} \left[U \left(x_{i} \right) \right] = \frac{\partial}{\partial p_{i}} \left[\overline{U} \right]$$

$$\sum_{i} \frac{\partial U}{\partial x_{i}} \frac{\partial x_{j}^{c}}{\partial p_{i}} = 0 \qquad (6')$$

$$\frac{\partial U}{\partial x_j} = \frac{1}{\mu} p_j$$
 (by first-order condition)

Substituting into (6')

$$\frac{1}{\mu} \sum_{i} p_{i} \frac{\partial x_{j}^{c}}{\partial p_{i}} = 0$$

If marginal utility of income is non-zero, then $\mu \neq 0$.

$$\sum_{i} p_{i} \frac{\partial x_{j}^{c}}{\partial p_{i}} = 0$$

Substituting this result into (5') gives

$$\frac{\partial e}{\partial p_i} = x_i^c$$

(7'; Hotelling's Lemma)

PRIMAL PROBLEM

DUAL PROBLEM

By the budget constraint,

$$\frac{\partial}{\partial m} \left(\sum_{i} p_{i} \times_{i} \right) = \frac{\partial m}{\partial m} = 1$$

$$\sum_{i} p_{i} \frac{\partial x_{i}}{\partial m} = 1$$

$$\therefore \frac{\partial V}{\partial m} = \lambda \qquad (6)$$

Substitute (6) into (5);

$$\frac{\partial V}{\partial p_i} = -\frac{\partial V}{\partial m} x_i$$

$$-\frac{\partial V / \partial p_i}{\partial V / \partial m} = x_i$$
 (7: Roy's Identity)

(7) gives another representation of the uncompensated demand functions; they reflect price and income effects on the indirect utility function.

Measuring welfare change

The measure of welfare change is obtained by differentiation of the indirect utility function:

$$dV = \sum_{i} \frac{\partial V}{\partial p_{i}} dp_{i} + \frac{\partial V}{\partial m} dm$$

Substituting the results of equations (5) and (6),

$$dV = - \lambda \sum_{i} x_{i} dp_{i} + \lambda dm$$

$$dW = \frac{dV}{\lambda} = -\sum_{i} x_{i} dp_{i} + dm$$

For a discrete change in price,

$$\Delta W = -\sum_{i} \int_{P_{i}^{1}}^{P_{i}^{2}} x_{i}(p, m) dp_{i} + \Delta m$$
 (8)

7' are again the compensated demand functions; they reflect only price effects on the expenditure function. These demand curves are different from the uncompensated demand curves, which reflect price and income effects.

Measuring welfare change

The measure of welfare change is obtained by differentiating the expenditure function:

$$de = \sum_{i} \frac{\partial e}{\partial p_{i}} dp_{i} + \frac{\partial e}{\partial u} du$$
$$de = \sum_{i} x_{i}^{c} dp_{i} + \mu du$$

This expression can be evaluated only by choosing a particular value of U, so that du = 0.

If we choose initial utility, we associate welfare change with the compensating variation (CV). CV is the expenditure change needed to maintain initial utility at the new prices

PRIMAL PROBLEM

DUAL PROBLEM

 X_i is a function of p and m, and both are changing simultaneously. Unless

$$\frac{\partial x_i}{\partial p_i} = \frac{\partial x_j}{\partial p_i}$$

for all i and j, the value of this integral is not unique. Instead, it depends on the sequence of price changes. This problem is known as <u>path</u> <u>dependence</u>.

$$CV = e(p^{2}, u^{1}) - e(p^{1}, u^{1})$$

$$= \sum_{i} \int_{p_{i}^{1}}^{p_{i}^{2}} \frac{\partial e}{\partial p_{i}} dp_{i}$$

$$= \sum_{i} \int_{p_{i}^{1}}^{p_{i}^{1}} x_{i}(p, u) dp_{i}$$

This measure is <u>path-independent</u>. because

$$\frac{\partial x_i}{\partial p_j} = \frac{\partial^2 e}{\partial p_i \partial p_j} = \frac{\partial^2 e}{\partial p_j \partial p_i} = \frac{\partial x_j}{\partial p_i}$$

(from 7', Hotelling's Lemma).