Size Dependent Cannibalism in Juvenile Nile Tilapia (O. *niloticus*)

Yonas Fessehaye^{1,2}, M. A. Rezk², H. Bovenhuis¹ and H. Komen¹

 ¹ Wageningen University & Research Center, The Netherlands
 ² The WorldFish Center, Regional Office for Africa and West Asia, Abbassa, Egypt

Introduction

Cannibalism in fish

Cannibalism is wide spread & common in fish

Various sizes or ages, between cohorts or age classes

 size variation, food availability, high population density, limited refuge areas & light conditions
 Is more intense in early life stages

Introduction

► Early stages → maximum variability of growth → size heterogeneity → social dominance → aggressive behavior & cannibalism

Cannibalism in O. niloticus

Major problem in tilapia hatcheries

It has received little attention

Factors underlying it have not been investigated in detail

Objectives

To test the hypothesis that prey size in O. niloticus is a function of predators' oral gape and prey body depth

To predict cannibalism based on body measurements of both prey and predator

Predator-prey linear regression model

Assumptions:

Oral gape of a predator largely determines maximum prey size

A predator could swallow a fish with a body depth smaller or equal to its maximum oral gape

A predictive model for maximum prey size was developed based on morphometric dimensions of 140 fingerlings

 All individuals were measured for total weight (W), total length (L) oral gape (G) & body depth (D)

Linear regressions were developed between body measurements

Linear regressions

> Body weight/Gape: $Log_{10}G_{predator} = a_1 + \beta_1 Log_{10}W_{predator}$(1)

> Body weight/body depth: $Log_{10}D_{prey} = a_2 + \beta_2 Log_{10}W_{prey}$ (2)

Where: β_1 , β_2 = regression coefficients & a_1 , a_2 = intercepts

A predator can consume a prey with body depth
 (D) smaller or equal to predator's Gape (G)

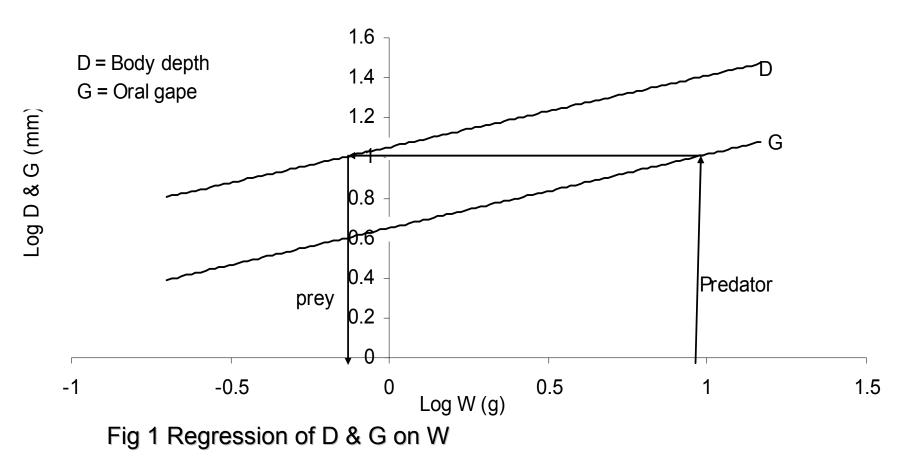
► $G_{\text{predator}} \leq D_{\text{prev}} \rightarrow \text{Equation 1} = \text{Equation 2}$

Maximum prey size for a given predator size:

 $Log_{10}W_{prey} = (a_1 - a_2)/\beta_2 + (\beta_1/\beta_2)Log_{10}W_{predator}....(3)$

Model Verification

▶ 76 trials conducted to:
 → Verify the regression model
 → estimate the actual max prey size


Trials were carried out in a 20L aquaria (26-28°C and 12L:12D)

One prey & one predator of known length were paired in an aquarium fish & were checked daily

► If a prey had been eaten → prey size within the predation range & the predator was given a slightly bigger prey

If the prey had not been consumed with in two days it is considered too large for that predator (upper limit for the predator)

Predator-prey model

Linear regressions:

- Body weight/Gape: Log₁₀G_{predator} = 0.65 + 0.37Log₁₀W_{predator} (R² = 0.963, n = 140)
- Body weight/body depth:
 Log₁₀D_{prey} = 1.06 + 0.36Log₁₀W_{prey} (R² = 0.981, n = 140)

Regression model for maximum prey size is given by:

 $Log_{10}W_{prey} = 1.03Log_{10}W_{predator} - 1.13$ (4)

Verification showed that the model slightly over estimates prey size

The model should be revised as:

 $Log_{10}W_{prey} = Log_{10}W_{predator} - 1.18$ (5)

Model verification

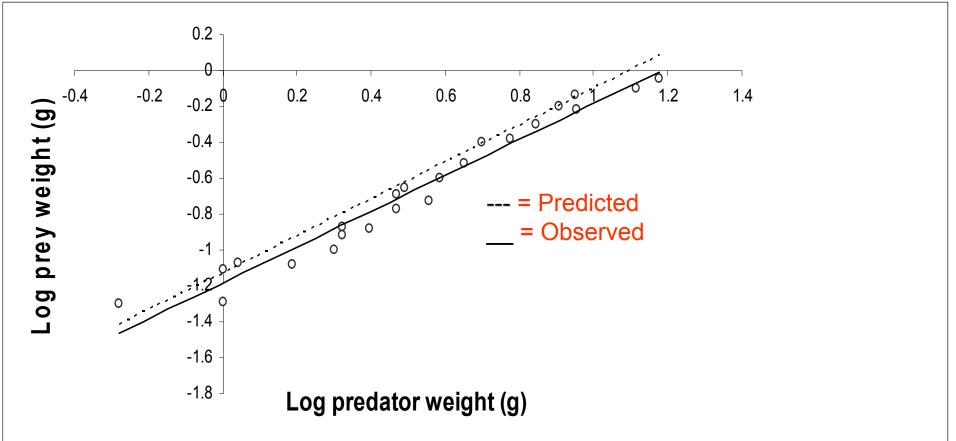


Fig. 2 observed & predicted maximum prey weight for a given weight of predator

Discussions

The model approach can prove useful for predicting cannibalism between larvae of known size distribution

The model verification yielded observed values slightly higher than expected

→ Other features might play a role in limiting maximum prey size e.g. pharyngeal gape

 Actual mouth elasticity might be smaller than our measurements indicated

Conclusions

Practical implications

The model can be of practical use in size grading which is a key step in controlling cannibalism

➤ Over estimation of prey size → higher safety margin → reduces cannibalism further

Cannibalism could be kept minimal if predator to prey weight ratio is less than 13 times

Thank You