Effect of Methylene Blue and Sodium Chloride on the Bacterial Load of Nile Tilapia (*Oreochromis niloticus*) Fingerlings During Transport

Remedios B. Bolivar, Michael Angelo D. Aragones and Gemerlyn G. Garcia^{*}

College of Fisheries-Freshwater Aquaculture Center and College of Veterinary Science and Medicine Central Luzon State University, Science City of Muñoz, Nueva Ecija Philippines

Introduction

Tilapia as a source of protein

- Contribution of tilapia to Philippine aquaculture is 8.4%
- Fingerlings production is vital to the tilapia industry
- Survival of fingerlings during transport is critical

Significance of the Study

> Use of methylene blue and sodium chloride in the reduction of bacterial load during fingerlings transport

Statement of the Problem

Maintenance of healthy tilapia fingerlings for grow-out

Effective disinfectants in fish transport must be identified

Objectives of the Study

To determine the effect of using two concentrations of Sodium chloride and Methylene blue on the bacterial load of the transport water of Nile tilapia fingerlings

To compare which concentration of the two chemicals was more effective in the reduction of bacterial load of the transport water of Nile tilapia fingerlings

Bacterial Diseases of Fish

- > Columnaris disease
- > Edwardsiella septicemia or Edwardsiellosis
- > Vibriosis
- » Motile Aeromonad Septicemia
- > Pseudomonad Septicemia or Red Spot disease
- » Mycobacterios or Piscine Tuberculosis

Considered as "aspirin" of aquaculture

Commonly used to treat many external parasites of fishes

Provides additional treatment in several cases of bacterial disease of fishes

Methylene blue

It has inhibitory action on bacteria due to its binding effect with cytoplasmic structure within the cell

» Reduces water mold infection

Effective for treating external parasites in fishes

Materials and Methods

Treatments

Treatment Concentration

I II III IV V control
1 g/l of sodium chloride
2 g/l of sodium chloride
3 mg/l methylene blue
1 mg/l of methylene blue

Chemicals used in the study

Test fish

Size of fingerlings:
 size # 24 Nile tilapia

Source of fingerlings: BFAR-NFFTC, CLSU

Transport Procedure

- Conditioning of fingerlings
- No feeding was done before transport
- Transport bags (20 x 30 x 0.003 in)
- Loading rate of 1,100 fingerlings/bag
- Duration of transport: 12 hours
- > The bags were oxygenated

Collection of water samples

> 100 ml of transport water was collected in each bag

Samples of transport water were placed in test tubes for bacterial load and water quality analyses

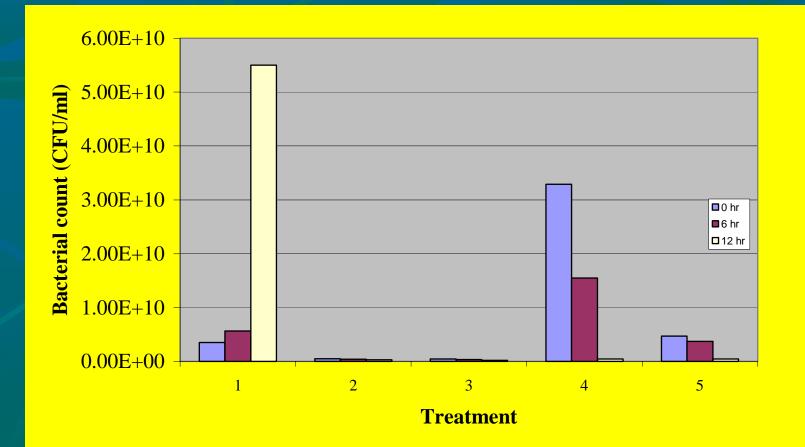
Bacterial counting

> Serial dilution up to 10⁻⁷ was done

> 0.01 ml from the bacterial suspension was placed in petri plates and incubated for 24 hours

Number of Colony Forming Units per milligram (CFU/ml) were counted

Data gathered


Bacterial count (CFU/ml)
Mortality (%)
Water quality parameters
pH
Temperature (°C)
D.O. (mg/L)

Results

Bacterial count in the transport water at 0, 6 and 12 hours of transport of Nile tilapia fingerlings

Treatment	Bacterial count (CFU/ml)				
	0-hr	6-hr	12-hr		
I	3.5 x 10 ^{9 a}	5.6 x 10 ^{9 a}	5.5 x 10 ^{10 a}		
II	5.1 x 10 ^{8 b}	3.8 x 10 ^{8 b}	2.8 x 10 ^{8 b}		
III	$4.5 \ge 10^{8 \text{ b}}$	$3.5 \ge 10^{8 \text{ b}}$	2.1 x 10 ^{8 b}		
IV	$3.3 \ge 10^{10} \text{ c}$	$1.6 \ge 10^{10} c$	$4.3 \ge 10^{8 \text{ c}}$		
V	4.7 x 10 ⁹ c	3.7 x 10 ⁹ c	4.6 x 10 ^{8 c}		

Changes in bacterial count in the five treatments at every 6-hour intervals

Water quality parameters at 0, 6 and 12 hours of transport

	Duration of			Treatment		
Parameter	transport (hour)	1	2	3	4	5
pH	0	8.0	7.6	7.7	8.2	8.1
	б	7.7	7.3	7.5	7.7	7.5
	12	7.7	7.8	7.7	7.7	7.6
Temperature (°C)	0	25.2	25.4	25.5	25.8	25.3
	6	29.4	29.3	29.5	29.1	29.1
	12	30.4	30.2	30.3	30.3	30.7
Dissolved oxygen (mg/l)	0	18.6	18.2	18.5	18.6	18.2
	б	14.7	14.4	14.9	14.7	14.1
	12	15.0	14.5	14.3	15.4	15.4

Mortality (number and percent) and percent survival of size # 24 Nile tilapia fingerlings after 12 hours of transport

Treatment	Mortality (%)			
1	0.8			
2	0.6			
3	0.7			
4	0.7			
5	0.4			

Discussion

- » Bacterial count in Treatment 1 was highest among all treatments at 0 to 12 hour of transport
- Bacterial count using methylene blue showed highest decrease in bacterial count compare to sodium chloride

Conclusion

Methylene blue and sodium chloride were both effective in reducing the bacterial load in the transport water compared with the control Maraming Salamat Pol