

Kingdom Protista

Division Phaeophyta Kingdom Protista

NASA, Ames Research Center

Division Phaeophyta, first brown plants

land plants evolve

♦ Recent plants, ~500 mya Mammals **Plants** Humans Origin of Earth Origin of Crust and Core "Standard" eukaryote cells Kingdoms No multinucleate cells Motile cells usual Bacteria Precambrian Non-standard chloroplasts Cyanobacteria Macroscopic Billions of Years Ago Eukaryotes D. Des Marais

Things we will cover for brown algae

- ♦ General features defining characteristics
- Morphological lineages
 - use morphology to anticipate evolution
 - reveal variations in life history & gametes
- Ecology understanding interactions with environment and other species
- ♦ Commercial interests exploit ecology & life history
- ♦ Evolution diversity & change over time

General features

Division Phaeophyta Kingdom Protista

Ocean Forest

Ocean lovers

2,000 species (60 in HI oceans) 250+ genera (29 in HI)

Morphological Range:

filaments to complex multicell organisms

Recently arrived eukaryotes – well suited to coastal habitats

Natives and invasives

Diversity

Division Phaeophyta Kingdom Protista

<u>Pigments</u> – photosynthesis

<u>Storage</u> <u>Products</u> Growth

- ♦ Chlorophyll <u>a</u>
- ♦ Chlorophyll <u>c</u>
- ♦ Fucoxanthin

Others

- ♦ Carotenoids
- UV absorbing molecules

Photosynthesis & Pigments

Division Phaeophyta Kingdom Protista

 Light energy is harvested by the cell

Only specific colors are absorbed

 Other colors are reflected back to your eye

Light Absorbed by a Brown Alga

Division Phaeophyta Kingdom Protista

Tetrapyrrole Ring

Phytol Chain of Chl <u>a</u> missing in Chl <u>c</u>

General features

Division Phaeophyta Kingdom Protista

<u>Pigments</u> – photosynthesis

Storage Products Growth

♦ Every cell can divide

- ♦ Chlorophyll <u>a</u>
- ♦ Chlorophyll c
- ♦ Fucoxanthin

LaminarinStarch (C)MannitolSugar (C)

Multicellular organisms:Fragments regrow

♦ True tissues

Others

- Carotenoids
- VV absorbing molecules

Cell wall structure

Division Phaeophyta Kingdom Protista

Two essential parts:

- ♦ fibers of cellulose (rigid), a glucose polymer
- ♦ gels of polysaccharides (flexible) as ALGINATE

Cell wall structure

Division Phaeophyta Kingdom Protista

Two essential parts:

- ♦ fibers of cellulose (rigid), a glucose polymer
- ⋄ gels of polysaccharides (flexible) as ALGINATE

"Copolymer"
blocks of sugars
Guluronic (G)
Mannuronic (M)

General features

Division Phaeophyta Kingdom Protista

What is in a typical phaeophyte cell?

· Unusual membrane

system around chloroplast and nucleus

Pyrenoid
 large, stalked
 and surrounded
 by laminarin
 starch

Chloroplastshave grana

Evolution of eukaryotes Xenogenous hypothesis heterotrophs, Simple cells phagocytosis Autotrophs - green and red algae (bg Mereschowsky, 1905; 1910

General features

Division Phaeophyta Kingdom Protista

How are phaeophyte cells unusual?

Life History as a "Strategy"

Division Phaeophyta Kingdom Protista

Zygotic Meiosis Life History

Meiosis is associated with Zygote Germination

Morphological lineages

- Evaluate adult form to gain insight in possible evolutionary processes.
- Step-by-step acquisition of new traits via genetic change.
- Examine reproductive cells and other characters as additional data.
- Useful means to construct evolutionary hypotheses to test with molecular data.

Life History as a "Strategy

Division Phaeophyta Kingdom Protista

Meiosis is associated with Spore Production

Growth & morphology

Genetic change

Division Phaeophyta Kingdom Protista

Morphological Lineage #1
Order Ectocarpales

All cells appear virtually identical - internally

Evolution has taken a simple shape to more complex but related forms:

Multi filamentous genera

Diversity

Division Phaeophyta Kingdom Protista

Hincksia sp

Life history by observation

Division Phaeophyta Kingdom Protista

Division Phaeophyta Life History as a Kingdom Protista "Strategy recognition zygote germling isogametes motosis meiosis Ectocarpus sp. nitosis spores germlings O

adults

mitosis

Life History as a "Strategy

Division Phaeophyta Kingdom Protista

Meiosis is associated with Spore Production

Reproduction and gametes

2 Gametes – opposite strains always fuse

Zygote - diploid cell via fusion of gametes

Division Phaeophyta Kingdom Protista

Equally sized gametes

Isogamy

Unequal gametes

Anisogamy

Egg & sperm gametes

Oogamy

egg

Minimal diversity in gamete shape...

Equal length flagella Isokont

Swimming gametes have 2 flagella like greens

♦ But flagella of swimming cells are unequal in length and HAIRY

Unequal length flagella Hetero kont Laterally inserted

Minimal diversity in gamete shape...

These males gametes show the limited diversity among brown algae

Reds - spermatium

Greens - biflagellate to stephanokont males

Division Phaeophyta Kingdom Protista

Minimal diversity in spore shape

Division Phaeophyta Kingdom Protista

- * Most brown algal spores swim
- ♦ 2 flagella
- ♦ Settlement ?

Growth & morphology

Division Phaeophyta Kingdom Protista

Morphological Lineage #2
Order Dictyotales

Division Phaeophyta Kingdom Protista

Order Dictyotales

Life History as a "Strategy

Division Phaeophyta Kingdom Protista

Meiosis is associated with Spore Production

Growth & morphology

Division Phaeophyta Kingdom Protista

Morphological Lineage #3
Order Laminariales

Evolution has taken a simple shape:

- ♦ constrained into lamina
- ♦ large sporophyte generations

Macrocystis

Diversity

Division Phaeophyta Kingdom Protista

Ecology

Di

Division Phaeophyta Kingdom Protista

Kelp forests sustain coastal diversity epiphytic pelagic

benthic

understory

Division Phaeophyta Life History as a "Strategy" Kingdom Protista Macrocystis

Life History as a "Strategy"

Division Phaeophyta Kingdom Protista

Ecklonia cava

Spores

Egg and sperm

Growth & morphology

Division Phaeophyta Kingdom Protista

Morphological Lineage # 4
Order Fucales

Division Phaeophyta Kingdom Protista

Diversity
Sargassum thunbergii Gunma Japan

Order Fucales

Sargassum cristaefolium Guam

Life History as a "Strategy

Division Phaeophyta Kingdom Protista

Meiosis is associated with Gamete Production

Division Phaeophyta Life History as a Kingdom Protista "Strategy" juveņile zygote recognition. Sargassum sp. oogametes 5 cm vegetative cell detail meiosis

Life History as a "Strategy"

Division Phaeophyta Kingdom Protista

GAMETIC MEIOSIS 1 free living entity LIFE HISTORY Gamete Diploid entity Zygote **MEIOSIS** Gamete **MITOSIS**

Cells must pass through this cycle

to add new genetic individuals to population

Ecology of Hawaiian Reef Algae. Division Phaeophyta Kingdom Protista Frondose Algae of Wakiki, by M S. Doty 1969 Biomass - wet wt, g/m² 6000 5000 4000 3000 2000 1000 Duration of Study, mo 4 7 9 12 13 17 Reef region, m from shore Dictyotales, Fucales

representatives on

reefs

All browns were native species Most abundant biomass near shore