

Active ingredients + Inert ingredients

Active ingredient chemical name:
5-amino-1-(2,6 dichloro-4-(trifluoromethyl)
phenyl)-4-((1,R,S)-(trifluoromethyl) sulfinyl)1-H-pyrazole-3-carbonitrile

Common name: fipronil

Trade names: Termidor SC, TopChoice

granular, MaxForce FC Professional Insect

Control Ant Killer Bait Gel, etc.

Insecticides

Active ingredient chemicals are grouped into insecticide classes with similar characteristics

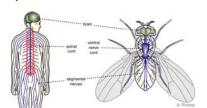
The **chemical structure** of the active ingredient usually defines its mode of action

Target site - the physical location within an organism where the insecticide acts

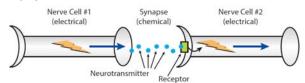
Mode of action - the way in which it causes physiological disruption at the target site

Insecticides that Target the Insect Nervous System - neurotoxins

Multi-lobed brain, in the head and nerve


cord

Chemical and physical nature of both systems

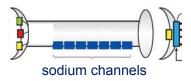

is the same

Human: spinal cord located dorsally - central nervous system

Insects: nerves ventrally located - decentralized

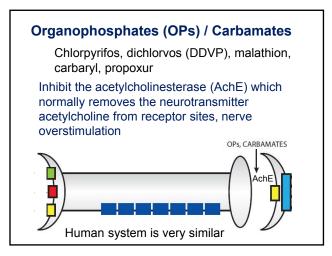
Nervous System – interconnected cells carrying an electrical impulse driven by charged sodium, potassium, and chloride ions

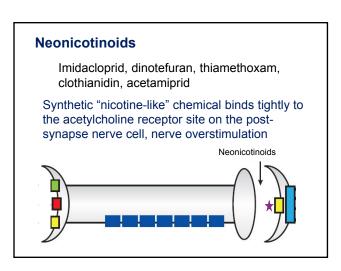
Important neurotransmitters include acetylcholine (Ach), gamma amino butyric acid (GABA), and glutamate


Chemical Group	MOA	Target Site	Route of Entry		
Insecticides that Target the Insect Nervous System					
Pyrethrins / Pyrethroids	Sodium Channel Modulation	Axon of Nerve	Contact		
Oxadiazines	Sodium Channel Blockage	Axon of Nerve	Oral		
Semicarbazones	Sodium Channel Blockage	Axon of Nerve	Contact & Oral		
OPs / Carbamates	Acetyl cholinesterase Inhibition	Nerve Synapse	Contact		
Neonicotinoids	Acetylcholine Receptor Stimulation	Nerve Post-synapse	Contact & Oral		
Spinosyns	Acetylcholine Receptor Stimulation	Nerve Post-synapse	Oral		
Phenylpyrazoles	GABA Receptor Blockage	Nerve Post-synapse	Contact & Oral		
Avermectins	Glutamate Receptor Stimulation	Nerve Post-synapse	Oral		

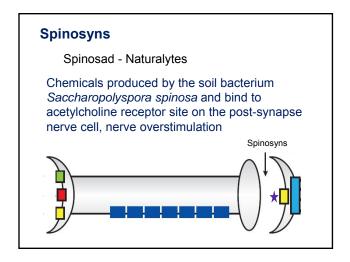
Pyreth<u>rin</u>s and Pyreth<u>roid</u>s (natural vs. synthetic)

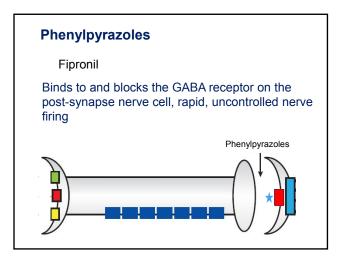
Pyrethrins, bifenthrin, permethrin, cyfluthrin, betacyfluthrin, deltamethrin, cypermethrin, resmethrin, dphenothrin, lambda-cyhalothrin


Inhibit the on/off switch of nerve cells, called sodium channels, by delaying close, causing uncontrolled, uninterrupted nerve firing

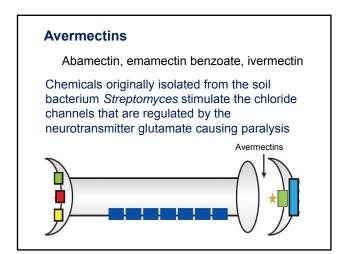


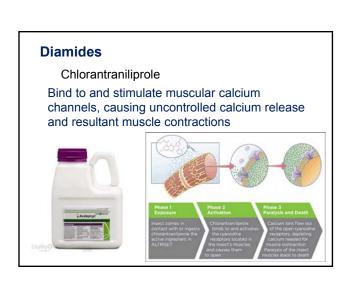
Oxadiazines Semicarbazones Indoxacarb Metaflumizone Indoxacarb is broken down into a metabolite (activation), both indoxacarb and metaflumizone target sodium channels completely blocking ion flow into nerve cells, insect paralysis





LD ₅₀ s and Neonicotinoids				
Imidacloprid	450			
Acetamiprid	217			
Clothianidin	>5000			
Thiamethoxam	1563			
Dinotefuran	>2000			





LD₅₀s Spinosad (synaptic stimulation nicotinic acetycholine sites) Spinosads 3783-5000 Phenylpyrazoles (GABA receptor disruption) Fipronil 97 Spinosads are Category IV insecticides (practically nontoxic) Fipronil, while quite toxic, is used at very, very low rates

Chemical Group	MOA	Target Site	Route of Entry		
Insecticides that <u>Do Not</u> Target the Insect Nervous System					
Diamides	Muscle Stimulation	Muscular Calcium Channel	Oral		
Juvenile Hormone Analogs	Mimic Juvenile Hormone Action	JH Degradative Enzymes / Receptor	Contact & Oral		
Chitin Synthesis Inhibitors	Block Chitin Formation	Exoskeleton	Oral		
Amidinohydrazones	Inhibit Energy Production	Mitochondria within Cells	Oral		
Pyrroles	Inhibit Energy Production	Mitochondria within Cells	Contact		
Fumigant (sulfuryl fluoride)	Inhibit Energy Production	Citric Acid / Glycolysis Cycles in Cells	Inhalation		
Borates	Non-Specific Metabolic Disruption	Cells	Oral		
Dehydrating Dusts	Adsorption of Cuticular Wax Layer	Exoskeleton	Contact		

Insect Growth Regulators

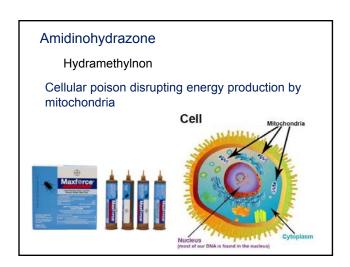
Juvenile Hormone Analogs

Hydroprene, methoprene, pyriproxyfen, fenoxycarb

Juvenile hormones in immature insects keeps them from becoming adults – chemicals may bind to juvenile hormone-degrading enzymes, the juvenile hormone receptor itself, or a combination of both

Imidacloprid, Permethrin, Pyriproxyfen

Insect Growth Regulators


Chitin Synthesis Inhibitors

Diflubenzuron, hexaflumuron, noviflumuron, lufenuron

During molting, chitin is synthesized and incorporated into the insect's exoskeleton - chitin synthesis inhibitors block chitin synthase

Pyrrole

Chlorfenapyr

Must be converted by enzymes within the insect to an active form (activation)

The metabolite form is insecticidal and toxic to mammals, <u>but</u>, mammals lack the activation enzymes

It disrupts energy production by mitochondria

Fumigant

Sulfuryl fluoride

Inhibits energy production in cells – non-specific metabolic inhibitor

Warning agent chloropicrin (tear gas)

Borates

Borax, boric acid, disodium octaborate tetrahydrate

Boron is an essential micronutrient for plants and animals - at higher concentrations can be toxic

Evidence suggests that high levels of boron acts as a general cellular toxin or non-specific metabolic disruptor

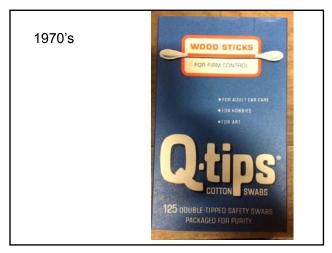
Dehydrating Dusts

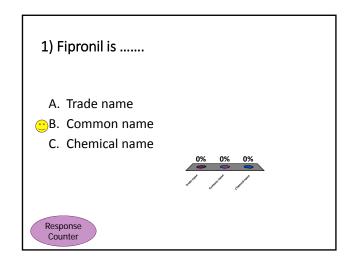
Silica gels, diatomaceous earth

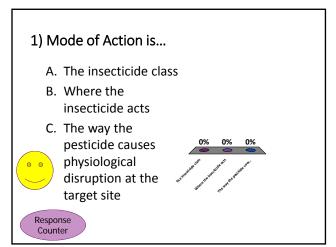
Silica gels are synthetically produced, diatomaceous earth is the fossilized remains of diatoms

Adsorb the thin wax layer on the insect

exoskeleton that prevents insects from losing water and desiccating







Resources

- •Suiter, D. R. and Scharf, M. E. 2015 Insecticide Basics for the Pest Management Professional. UGA Bulletin 1352.
- •Insecticide Resistance Action Committee http://www.irac-online.org/modes-of-action/